当前位置: 首页 > news >正文

做百度推广的网站吗网站为什么要seo?

做百度推广的网站吗,网站为什么要seo?,邮箱如何注册企业邮箱,做企业官网设计公司前景来源#xff1a;数学与人工智能摘要以深度学习为代表的人工智能技术在信息领域的应用#xff0c;极大地提高了信息的利用效率和挖掘价值#xff0c;深刻的影响了各领域的业务形态#xff0c;同时也引发了监管部门和用户对这一新技术运用中出现的 “算法黑箱”问题关切和疑虑… 来源数学与人工智能摘要     以深度学习为代表的人工智能技术在信息领域的应用极大地提高了信息的利用效率和挖掘价值深刻的影响了各领域的业务形态同时也引发了监管部门和用户对这一新技术运用中出现的 “算法黑箱”问题关切和疑虑。如何对相关算法、模型、及其给出的结果进行合理的解释成为数据科学家亟需解决的问题。一、为什么智能算法需要可解释1.来自人工智能的挑战      自AlphaGo战胜人类顶尖围棋手之后人工智能这一概念真正成为了社会各界关注的焦点也为各国政府所重视。一方面可以给我们带来诸多便利比如可能为我们提供医疗、法律、金融等方面的建议或决策也可能直接操控汽车、无人机甚至大规模杀伤性武器[1]。但另一方面它也被用来“做坏事”甚至危害人类。如某些网站利用人工智能算法进行“大数据杀熟”2017年也发生了全国首例利用人工智能技术进行网络诈骗的案件。2015年德国大众公司甚至发生了机器人“杀人事件”[2]。欧盟已经要求所有算法解释其输出原理[3]这意味着不可解释的算法模型将成为非法使用[3,4]。2.可解释是人工智能发展的必然选择      在时下热议的人工智能相关伦理、算法歧视、算法正确性、安全性等问题中有一个问题被时常提起即以深度学习算法为代表的人工智能算法的可解释性问题。人类理性的发展历程使我们相信如果一个判断或决策是可以被解释的我们将更容易了解其优点与不足更容易评估其风险知道其在多大程度上、在怎样的场合中可以被信赖以及我们可以从哪些方面对其进行不断改善以尽量增进共识、减少风险推动相应领域的不断发展。这样的思维范式或许是诞生在人工智能时代之前的稍显过时的思维模式。或许随着科技和社会的发展未来会演化出新的思维范式但目前这仍然是我们最成熟、最具共识、最可信赖的思维模式 [1]。二、可解释性方法概述      17年ICML会议上来自谷歌的科学家给出一个关于可解释性的定义是“Interpretation is the process of giving explanations to Human”[5]。许多模型及应用不可解释性的原因主要来源于对问题和任务了解得还不够充分。那么只要在使用模型的过程中只要是能够提供给我们关于数据或模型的可以理解的信息有助于我们更充分的发现知识、理解和解决问题的方法那么都可以归类为可解释性方法。同时这篇文章将可解释性方法按进行的过程划分为如下三类在建模之前的可解释性方法、建立本身具备可解释性的模型和建模后使用可解释性方法对模型作出解释下面对这三大类方法分别作介绍。三、建模前在建模之前的可解释性方法       在建模之前的可解释性方法主要涉及一些数据预处理或数据展示的方法机器学习解决的是从数据中发现知识和规律的问题如果我们对想要处理的数据特征所知甚少指望对所要解决的问题本身有很好的理解是不现实的在建模之前的可解释性方法的关键在于帮助我们迅速而全面地了解数据分布的特征从而帮助我们考虑在建模过程中可能面临的问题并选择一种最合理的模型来逼近问题所能达到的最优解。      数据可视化就是一类非常重要的建模前可解释性方法。很多对数据挖掘稍微有些了解的人可能会认为数据可视化是数据挖掘工作的最后一步大概就是通过设计一些好看又唬人的图表或来展示你的分析挖掘成果。但实际上真正要研究一个数据问题之前通过建立一系列方方面面的可视化方法来建立我们对数据的直观理解是非常必须的特别是当数据量非常大或者数据维度非常高的时候比如一些时空高维数据如果可以建立一些一些交互式的可视化方法将会极大地帮助我们从各个层次角度理解数据的分布。四、建模中建立本身具备可解释性的模型       建立本身具备可解释性的模型是最关键的一类可解释性方法同样也是一类要求和限定很高的方法具备可解释性的模型大概可以分为以下几种模型[6]。      基于规则的模型比如我们提到的非常经典的决策树模型。这类模型中任何的一个决策都可以对应到一个逻辑规则表示。但当规则表示过多或者原始的特征本身就不是特别好解释的时候基于规则的方法有时候也不太适用。      基于单个特征的方法主要是一些非常经典的回归模型比如线性回归、逻辑回归、广义线性回归、广义加性模型等。这类模型除了结构比较简单之外更重要的是回归模型及其一些变种拥有非常坚实的统计学基础上百年来无数统计学家探讨了在各种不同情况下的模型参数估计与修正、假设检验、边界条件等等问题使得他们在各种不同情况下都能使具有有非常好的可解释性。     基于实例的方法主要是通过一些代表性的样本来解释聚类/分类结果的方法。比如可以为每一个聚类簇中选出代表性样例和重要的子空间。     基于稀疏性的方法主要是利用信息的稀疏性特质将模型尽可能地简化表示。比如LDA方法根据层次性的单词信息形成了层次性的主题表达这样一些小的主题就可以被更泛化的主题所概括从而可以使我们更容易理解特定主题所代表的含义。     基于单调性的方法在很多机器学习问题中有一些输入和输出之间存在正相关/负相关关系如果在模型训练中我们可以找出这种单调性的关系就可以让模型具有更高的可解释性。比如医生对患特定疾病的概率的估计主要由一些跟该疾病相关联的高风险因素决定找出单调性关系就可以帮助我们识别这些高风险因素。五、建模后使用可解释性方法对模型作出解释      建模后的可解释性方法主要是针对具有黑箱性质的深度学习模型而言的 深度学习的黑箱性主要来源于其高度非线性性质每个神经元都是由上一层的线性组合再加上一个非线性函数的得到人们无法像理解线性回归的参数那样通过统计学基础假设来理解神经网络中的参数含义及其重要程度、波动范围。但实际上我们是知道这些参数的具体值以及整个训练过程的所以神经网络模型本身其实并不是一个黑箱其黑箱性在于我们没办法用人类可以理解的方式理解模型的具体含义和行为而神经网络的一个非常好的性质在于神经元的分层组合形式这让我们可以用物质组成的视角来理解神经网络的运作方式。主要分为以下几类的工作隐层分析方法、模拟/代理模型、敏感性分析方法[7,8,9]。隐层分析方法:该方法通过对隐层运用一些可视化方法来将其转化成人类可以理解的有实际含义的图像以展示神经网络中每层都学到的概念。我们都知道典型的CNN模型的一个完整卷积过程是由卷积-激活-池化pooling三个步骤组成的也可以通过反池化-反激活-反卷积这样的一个逆过程并借助特征可视化帮助我们理解CNN的每一层究竟学到了什么东西[7]。此外文献[]提出了一种网络切割的方法以提取CNN的语义概念[8]。模拟/代理模型该类方法是针对黑箱模型使用蒸馏Model distillation技术得到新的可解释模型训练这两个模型使他们的结果近似。但这类算法也存在很大的局限性比如模型本身并不能被“蒸馏”或者原始模型与蒸馏后的模型差异很大导致可解释性模型的意义不再存在。敏感性分析方法用于定量描述模型输入变量对输出变量的重要性程度的方法。是令每个属性在可能的范围变动研究和预测这些属性的变化对模型输出值的影响程度。我们将影响程度的大小称为该属性的敏感性系数敏感性系数越大就说明属性对模型输出的影响越大。一般来讲对于神经网络的敏感性分析方法可以分为变量敏感性分析、样本敏感性分析两种变量敏感性分析用来检验输入属性变量对模型的影响程度样本敏感性分析用来研究具体样本对模型的重要程度也是敏感性分析研究的一个新方向。在金融领域将敏感性分析与局部特征探索方法主要是树类模型能够有效解决金融领域普遍存在先验知识不足问题[12]。六、结束语     《火的礼物人类与计算技术的终极博弈》一书中提到“火使我们的生活更加舒适、健康和愉快。而它同时也拥有巨大的破坏力有可能因为意外也可能是故意纵火”,对于深度学习亦是如此。期待通过算法研究者、政府、法律等多方面的共同努力我们可以更好地掌握人工智能算法来帮助我们解决各种难题建设更加美好的社会。参考文献[1] 打破人工智能算法黑箱.张吉豫.https://36kr.com/p/5123323[2] 预言成真人工智能已参与犯罪危害人类社会如何加紧遏制新民晚报https://baijiahao.baidu.com/s?id1627686939432654294wfrspiderforpc[3] 人工智能的算法黑箱与数据正义 https://blog.csdn.net/UFv59to8/article/details/79947730[4] 算法黑箱是潘多拉的盒子算法与信息之二. http://www.sohu.com/a/323823906_550962[5] Interpretable Machine Learning: The fuss, the concrete and the questions. Been Kim. Google Brain. ICML 2017 Tutorial.[6] Interpretable Machine Learning. https://christophm.github.io/interpretable-ml-book/index.html[7]深度学习的可解释性研究一 让模型具备说人话的能力. https://zhuanlan.zhihu.com/p/37223341.[8] 深度学习的可解释性研究二不如打开箱子看一看. https://zhuanlan.zhihu.com/p/38151985[9] 深度学习的可解释性研究三是谁在撩动琴弦. https://zhuanlan.zhihu.com/p/38568075[10]Zeiler M D, Fergus R . Visualizing and Understanding Convolutional Networks[M]// Computer Vision ECCV 2014. Springer.[11] David Bau, Bolei Zhou, Aditya Khosla, et al. Network Disp: Quantifying Interpretability of Deep Visual Representations[J]. 2017:3319-3327.[12] 深度学习的技术在金融行业中的应用. https://blog.csdn.net/sinat_22510827/article/details/9029431未来智能实验室的主要工作包括建立AI智能系统智商评测体系开展世界人工智能智商评测开展互联网城市云脑研究计划构建互联网城市云脑技术和企业图谱为提升企业行业与城市的智能水平服务。  如果您对实验室的研究感兴趣欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”
http://www.zqtcl.cn/news/196990/

相关文章:

  • 夹江移动网站建设手机网站微信登陆
  • 浏阳做网站网易企业邮箱注册官网
  • 东莞网站建设是什么意思自己怎么做企业网站建设
  • 免费的网站申请泰州网站整站优化
  • 毕业设计做企业门户网站过期域名网站
  • 网站建设和风险分析简单网页制作代码模板
  • 照片展示网站那个网站可以做攻略
  • 优秀网站设计赏析万网网站备案多久
  • 网站维护服务有哪些电商网站
  • 部门网站建设总结鼎城网站建设
  • 制作网站的模板下载大型商城购物平台开发
  • wordpress 分类文章置顶整站优化推广品牌
  • 网站手机验证码如何做官方网站在家做兼职
  • 东莞三合一网站制作网站建设 千助
  • 114网站做推广怎么样江苏建设培训网站
  • 如何让网站做网页适配网站上的产品五星怎样做优化
  • 怎么做网站排名优化免费jq网站模板
  • 源码时代培训机构官网自己建网站怎么做seo
  • 宜都网站制作济南比较大的网站制作公司
  • 怎么用电脑做网站主机假网站怎么制作
  • 网站 微信网络营销方案设计心得
  • 淘宝客 wordpress网站wordpress类似的工具
  • 农村建设房子建设网站建设渭南房产网站制作
  • php网站开发用什么win2008 iis 新建网站
  • 中山营销网站建设杭州网站建设开发有限公司
  • 被他人备案后做违法网站抖音seo推广
  • 手机网站广告代码南靖县建设局网站
  • 郑州网站建设智巢高德地图有外资背景吗
  • 网站开发常遇到客户问题wordpress怎么升级
  • 网站的空间是网站 建设 维护 公司