当前位置: 首页 > news >正文

网站搜索怎么做密云富阳网站建设

网站搜索怎么做,密云富阳网站建设,wordpress侧栏高度,网站建设公司该怎么销售文章目录 摘要安装包安装timm 数据增强Cutout和MixupEMA项目结构计算mean和std生成数据集 摘要 论文提出了一种名为D-Mixer的轻量级双动态TokenMixer#xff0c;旨在解决传统卷积的静态性质导致的表示差异和特征融合问题。D-Mixer通过应用高效的全局注意力和输入依赖的深度卷… 文章目录 摘要安装包安装timm 数据增强Cutout和MixupEMA项目结构计算mean和std生成数据集 摘要 论文提出了一种名为D-Mixer的轻量级双动态TokenMixer旨在解决传统卷积的静态性质导致的表示差异和特征融合问题。D-Mixer通过应用高效的全局注意力和输入依赖的深度卷积分别对均匀分割的特征片段进行处理使网络具有强大的归纳偏置和更大的有效感受野。以D-Mixer作为基本构建块设计了新颖的混合CNN-Transformer视觉主干网络TransXNet其性能优越。在ImageNet-1K图像分类任务中TransXNet-T相比Swin-T在top-1准确率上提高了0.3%同时计算成本更低。此外TransXNet-S和TransXNet-B展示了出色的模型扩展性分别实现了83.8%和84.6%的top-1准确率且计算成本合理。此外我们的网络架构在各种密集预测任务中展现出了强大的泛化能力优于其他先进的网络结构且计算成本更低。总之D-Mixer和TransXNet作为一种高效且具有强大泛化能力的网络结构为计算机视觉领域提供了新的解决方案。 这篇文章使用TransXNet完成植物分类任务模型采用transxnet_t向大家展示如何使用TransXNet。transxnet_t在这个数据集上实现了96%的ACC如下图 通过这篇文章能让你学到 如何使用数据增强包括transforms的增强、CutOut、MixUp、CutMix等增强手段如何实现TransXNet模型实现训练如何使用pytorch自带混合精度如何使用梯度裁剪防止梯度爆炸如何使用DP多显卡训练如何绘制loss和acc曲线如何生成val的测评报告如何编写测试脚本测试测试集如何使用余弦退火策略调整学习率如何使用AverageMeter类统计ACC和loss等自定义变量如何理解和统计ACC1和ACC5如何使用EMA 如果基础薄弱对上面的这些功能难以理解可以看我的专栏经典主干网络精讲与实战 这个专栏从零开始时一步一步的讲解这些让大家更容易接受。 安装包 安装timm 使用pip就行命令 pip install timmmixup增强和EMA用到了timm 数据增强Cutout和Mixup 为了提高成绩我在代码中加入Cutout和Mixup这两种增强方式。实现这两种增强需要安装torchtoolbox。安装命令 pip install torchtoolboxCutout实现在transforms中。 from torchtoolbox.transform import Cutout # 数据预处理 transform transforms.Compose([transforms.Resize((224, 224)),Cutout(),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])需要导入包from timm.data.mixup import Mixup 定义Mixup和SoftTargetCrossEntropy mixup_fn Mixup(mixup_alpha0.8, cutmix_alpha1.0, cutmix_minmaxNone,prob0.1, switch_prob0.5, modebatch,label_smoothing0.1, num_classes12)criterion_train SoftTargetCrossEntropy()Mixup 是一种在图像分类任务中常用的数据增强技术它通过将两张图像以及其对应的标签进行线性组合来生成新的数据和标签。 参数详解 mixup_alpha (float): mixup alpha 值如果 0则 mixup 处于活动状态。 cutmix_alpha (float)cutmix alpha 值如果 0cutmix 处于活动状态。 cutmix_minmax (List[float])cutmix 最小/最大图像比率cutmix 处于活动状态如果不是 None则使用这个 vs alpha。 如果设置了 cutmix_minmax 则cutmix_alpha 默认为1.0 prob (float): 每批次或元素应用 mixup 或 cutmix 的概率。 switch_prob (float): 当两者都处于活动状态时切换cutmix 和mixup 的概率 。 mode (str): 如何应用 mixup/cutmix 参数每个’batch’‘pair’元素对‘elem’元素。 correct_lam (bool): 当 cutmix bbox 被图像边框剪裁时应用。 lambda 校正 label_smoothing (float)将标签平滑应用于混合目标张量。 num_classes (int): 目标的类数。 EMA EMAExponential Moving Average是指数移动平均值。在深度学习中的做法是保存历史的一份参数在一定训练阶段后拿历史的参数给目前学习的参数做一次平滑。具体实现如下 import logging from collections import OrderedDict from copy import deepcopy import torch import torch.nn as nn_logger logging.getLogger(__name__)class ModelEma:def __init__(self, model, decay0.9999, device, resume):# make a copy of the model for accumulating moving average of weightsself.ema deepcopy(model)self.ema.eval()self.decay decayself.device device # perform ema on different device from model if setif device:self.ema.to(devicedevice)self.ema_has_module hasattr(self.ema, module)if resume:self._load_checkpoint(resume)for p in self.ema.parameters():p.requires_grad_(False)def _load_checkpoint(self, checkpoint_path):checkpoint torch.load(checkpoint_path, map_locationcpu)assert isinstance(checkpoint, dict)if state_dict_ema in checkpoint:new_state_dict OrderedDict()for k, v in checkpoint[state_dict_ema].items():# ema model may have been wrapped by DataParallel, and need module prefixif self.ema_has_module:name module. k if not k.startswith(module) else kelse:name knew_state_dict[name] vself.ema.load_state_dict(new_state_dict)_logger.info(Loaded state_dict_ema)else:_logger.warning(Failed to find state_dict_ema, starting from loaded model weights)def update(self, model):# correct a mismatch in state dict keysneeds_module hasattr(model, module) and not self.ema_has_modulewith torch.no_grad():msd model.state_dict()for k, ema_v in self.ema.state_dict().items():if needs_module:k module. kmodel_v msd[k].detach()if self.device:model_v model_v.to(deviceself.device)ema_v.copy_(ema_v * self.decay (1. - self.decay) * model_v) 加入到模型中。 #初始化 if use_ema:model_ema ModelEma(model_ft,decaymodel_ema_decay,devicecpu,resumeresume)# 训练过程中更新完参数后同步update shadow weights def train():optimizer.step()if model_ema is not None:model_ema.update(model)# 将model_ema传入验证函数中 val(model_ema.ema, DEVICE, test_loader)针对没有预训练的模型容易出现EMA不上分的情况这点大家要注意啊 项目结构 TransXNet_Demo ├─data1 │ ├─Black-grass │ ├─Charlock │ ├─Cleavers │ ├─Common Chickweed │ ├─Common wheat │ ├─Fat Hen │ ├─Loose Silky-bent │ ├─Maize │ ├─Scentless Mayweed │ ├─Shepherds Purse │ ├─Small-flowered Cranesbill │ └─Sugar beet ├─models │ ├─__init__.py │ └─transxnet.py ├─mean_std.py ├─makedata.py ├─train.py └─test.pymean_std.py计算mean和std的值。 makedata.py生成数据集。 ema.pyEMA脚本 train.py:训练RevCol模型 models来源官方代码对面的代码做了一些适应性修改。 计算mean和std 为了使模型更加快速的收敛我们需要计算出mean和std的值新建mean_std.py,插入代码 from torchvision.datasets import ImageFolder import torch from torchvision import transformsdef get_mean_and_std(train_data):train_loader torch.utils.data.DataLoader(train_data, batch_size1, shuffleFalse, num_workers0,pin_memoryTrue)mean torch.zeros(3)std torch.zeros(3)for X, _ in train_loader:for d in range(3):mean[d] X[:, d, :, :].mean()std[d] X[:, d, :, :].std()mean.div_(len(train_data))std.div_(len(train_data))return list(mean.numpy()), list(std.numpy())if __name__ __main__:train_dataset ImageFolder(rootrdata1, transformtransforms.ToTensor())print(get_mean_and_std(train_dataset))数据集结构 运行结果 ([0.3281186, 0.28937867, 0.20702125], [0.09407319, 0.09732835, 0.106712654])把这个结果记录下来后面要用 生成数据集 我们整理还的图像分类的数据集结构是这样的 data ├─Black-grass ├─Charlock ├─Cleavers ├─Common Chickweed ├─Common wheat ├─Fat Hen ├─Loose Silky-bent ├─Maize ├─Scentless Mayweed ├─Shepherds Purse ├─Small-flowered Cranesbill └─Sugar beetpytorch和keras默认加载方式是ImageNet数据集格式格式是 ├─data │ ├─val │ │ ├─Black-grass │ │ ├─Charlock │ │ ├─Cleavers │ │ ├─Common Chickweed │ │ ├─Common wheat │ │ ├─Fat Hen │ │ ├─Loose Silky-bent │ │ ├─Maize │ │ ├─Scentless Mayweed │ │ ├─Shepherds Purse │ │ ├─Small-flowered Cranesbill │ │ └─Sugar beet │ └─train │ ├─Black-grass │ ├─Charlock │ ├─Cleavers │ ├─Common Chickweed │ ├─Common wheat │ ├─Fat Hen │ ├─Loose Silky-bent │ ├─Maize │ ├─Scentless Mayweed │ ├─Shepherds Purse │ ├─Small-flowered Cranesbill │ └─Sugar beet新增格式转化脚本makedata.py,插入代码 import glob import os import shutilimage_listglob.glob(data1/*/*.png) print(image_list) file_dirdata if os.path.exists(file_dir):print(true)#os.rmdir(file_dir)shutil.rmtree(file_dir)#删除再建立os.makedirs(file_dir) else:os.makedirs(file_dir)from sklearn.model_selection import train_test_split trainval_files, val_files train_test_split(image_list, test_size0.3, random_state42) train_dirtrain val_dirval train_rootos.path.join(file_dir,train_dir) val_rootos.path.join(file_dir,val_dir) for file in trainval_files:file_classfile.replace(\\,/).split(/)[-2]file_namefile.replace(\\,/).split(/)[-1]file_classos.path.join(train_root,file_class)if not os.path.isdir(file_class):os.makedirs(file_class)shutil.copy(file, file_class / file_name)for file in val_files:file_classfile.replace(\\,/).split(/)[-2]file_namefile.replace(\\,/).split(/)[-1]file_classos.path.join(val_root,file_class)if not os.path.isdir(file_class):os.makedirs(file_class)shutil.copy(file, file_class / file_name)完成上面的内容就可以开启训练和测试了。
http://www.zqtcl.cn/news/344476/

相关文章:

  • 佛山制作手机网站莆田自助建站软件
  • 建邺做网站价格网站做换肤
  • 佛山有什么网站室内装饰设计怎么样
  • 智能建站与正常的网站购买 做网站 客户
  • 哪个是网络营销导向网站建设的基础微信商城开店需要费用吗
  • 宁波住房和建设局网站首页福州有做网站引流的吗
  • 国外科技类网站戴尔网站建设
  • 视频播放网站模板洞泾做网站公司
  • 深圳大学网站建设中美军事最新消息
  • gta5可用手机网站大全佛山网站建设服务
  • 智能建站软件哪个好智慧城市建设评价网站
  • 做网站用什么配资电脑织梦做的网站织梦修改网页模板
  • 手机网站制作吧网店营销策略
  • 管理员修改网站的参数会对网站的搜效果产生什么影响?网站建设新闻+常识
  • WordPress主题没有删除网站优化 工具
  • 建设外贸商城网站制作外国网站域名在哪查
  • 青浦练塘网站建设关键词优化的策略有哪些
  • 做网站链接怎么弄上海万户网络技术有限公司
  • 嵌入字体的网站网站结构和布局区别
  • 莆田网站建设五维网络有限公司零基础网站开发要学多久
  • 重庆官方网站查询系统2020最近的新闻大事10条
  • 中国网站建设公司排行榜成都彩票网站建设
  • 网站域名解析失败个人推广网站
  • 东莞网站建设网络公司排名卓业网站建设
  • 建立自己的网站平台的好处高校英文网站建设
  • 大力推进网站集约化建设兰州优秀网站推广
  • 手机wap网站怎样从微信公众号打开辽宁省住房和城乡建设厅网站上不去
  • 网站建设备案 优帮云四川建设设计公司网站
  • dede网站搬家 空间转移的方法网站建设多少钱一个平台
  • 山东济南网站开发互联网创业项目哪家好平台