网站建设全部流程包括备案,网站设计开发软件,微网站开发多少钱,免费优化网站MySQL分库分表总结#xff1a; 单库单表 #xff1a; 单库单表是最常见的数据库设计#xff0c;例如#xff0c;有一张用户(user)表放在数据库db中#xff0c;所有的用户都可以在db库中的user表中查到。 单库多表 #xff1a; 随着用户数量的增加#xff0c;user表的数…MySQL分库分表总结 单库单表 单库单表是最常见的数据库设计例如有一张用户(user)表放在数据库db中所有的用户都可以在db库中的user表中查到。 单库多表 随着用户数量的增加user表的数据量会越来越大当数据量达到一定程度的时候对user表的查询会渐渐的变慢从而影响整个DB的性能。如果使用
mysql, 还有一个更严重的问题是当需要添加一列的时候mysql会锁表期间所有的读写操作只能等待。 可以通过某种方式将user进行水平的切分产生两个表结构完全一样的user_0000,user_0001等表user_0000 user_0001 …的数据刚好是一份完整的数据。 多库多表 随着数据量增加也许单台DB的存储空间不够随着查询量的增加单台数据库服务器已经没办法支撑。这个时候可以再对数据库进行水平区分。
分库分表规则 设计表的时候需要确定此表按照什么样的规则进行分库分表。例如当有新用户时程序得确定将此用户信息添加到哪个表中同理当登录的时候我们得通过用户的账号找到数据库中对应的记录所有的这些都需要按照某一规则进行。 路由 通过分库分表规则查找到对应的表和库的过程。如分库分表的规则是user_id mod 4的方式当用户新注册了一个账号账号id的123,我们可以通
过id mod 4的方式确定此账号应该保存到User_0003表中。当用户123登录的时候我们通过123 mod 4后确定记录在User_0003中。 分库分表产生的问题及注意事项 1. 分库分表维度的问题
假如用户购买了商品,需要将交易记录保存取来如果按照用户的纬度分表则每个用户的交易记录都保存在同一表中所以很快很方便的查找到某用
户的购买情况但是某商品被购买的情况则很有可能分布在多张表中查找起来比较麻烦。反之按照商品维度分表可以很方便的查找到此商品的购
买情况但要查找到买人的交易记录比较麻烦。 所以常见的解决方式有 a.通过扫表的方式解决此方法基本不可能效率太低了。 b.记录两份数据一份按照用户纬度分表一份按照商品维度分表。 c.通过搜索引擎解决但如果实时性要求很高又得关系到实时搜索。 2. 联合查询的问题 联合查询基本不可能因为关联的表有可能不在同一数据库中。 3. 避免跨库事务 避免在一个事务中修改db0中的表的时候同时修改db1中的表一个是操作起来更复杂效率也会有一定影响。 4. 尽量把同一组数据放到同一DB服务器上 例如将卖家a的商品和交易信息都放到db0中当db1挂了的时候卖家a相关的东西可以正常使用。也就是说避免数据库中的数据依赖另一数据库中的数据。 一主多备 在实际的应用中绝大部分情况都是读远大于写。Mysql提供了读写分离的机制所有的写操作都必须对应到Master读操作可以在Master和Slave机器上进行Slave与Master的结构完全一样一个Master可以有多个Slave,甚至Slave下还可以挂Slave,通过此方式可以有效的提高DB集群的QPS. 所有的写操作都是先在Master上操作然后同步更新到Slave上所以从Master同步到Slave机器有一定的延迟当系统很繁忙的时候延迟问题会更加严重Slave机器数量的增加也会使这个问题更加严重。 此外可以看出Master是集群的瓶颈当写操作过多会严重影响到Master的稳定性如果Master挂掉整个集群都将不能正常工作。 所以1. 当读压力很大的时候可以考虑添加Slave机器的分式解决但是当Slave机器达到一定的数量就得考虑分库了。 2. 当写压力很大的时候就必须得进行分库操作。 --------------------------------------------- MySQL使用为什么要分库分表 可以用说用到MySQL的地方,只要数据量一大, 马上就会遇到一个问题,要分库分表. 这里引用一个问题为什么要分库分表呢?MySQL处理不了大的表吗? 其实是可以处理的大表的.我所经历的项目中单表物理上文件大小在80G多,单表记录数在5亿以上,而且这个表 属于一个非常核用的表:朋友关系表. 但这种方式可以说不是一个最佳方式. 因为面临文件系统如Ext3文件系统对大于大文件处理上也有许多问题. 这个层面可以用xfs文件系统进行替换.但MySQL单表太大后有一个问题是不好解决: 表结构调整相关的操作基 本不在可能.所以大项在使用中都会面监着分库分表的应用. 从Innodb本身来讲数据文件的Btree上只有两个锁, 叶子节点锁和子节点锁,可以想而知道,当发生页拆分或是添加 新叶时都会造成表里不能写入数据. 所以分库分表还就是一个比较好的选择了. 那么分库分表多少合适呢? 经测试在单表1000万条记录一下,写入读取性能是比较好的. 这样在留点buffer,那么单表全是数据字型的保持在 800万条记录以下, 有字符型的单表保持在500万以下. 如果按 100库100表来规划,如用户业务: 500万*100*100 50000000万 5000亿记录. 心里有一个数了,按业务做规划还是比较容易的. 分布式数据库架构--排序、分页、分组、实现 最近研究分布式数据库架构发现排序、分组及分页让着实人有点头疼。现把问题及解决思路整理如下。 一、 多分片水平切分返回结果合并排序 1、Select None Aggregate Function的有序记录合并排序 解决思路对各分片返回的有序记录进行排序去重合并。此处主要是编写排序去重合 并算法。 2、Select None Aggregate Function的无序记录合并 解决思路对各分片返回的无序记录进行去重合并。 优点实现比较简单。 缺点数据量越大字段越多去重处理就会越耗时。 3、Select Aggregate Function的记录合并排序 Oracle常用聚合函数Count、Max、Min、Avg、Sum。 AFMax、Min 思路通过算法对各分片返回结果再求max、min值。 AFAvg、Sum、Count 思路分片间无重复记录或字段时通过算法对各分片返回结果再求avg、sum、count值。分片间有重复记录或字段时先对各分片记录去重合并再通过算法求avg、sum、count值。 比如 select count(*) from user select count(deptno) from user; select count(distinct deptno) from user; 二、多分片水平切分返回结果分页 解决思路合并各分片返回结果逻辑分页。 优点 实现简单。 缺点 数据量越大缓存压力就越大。 分片数据量越大查询也会越慢。 三、多分片水平切分查询有分组语法的合并 1、Group By Having None Aggregate Function时 Select None Aggregate Function 比如select job user group by job; 思路直接去重排序合并。 Select Aggregate Function 比如select max(sal),job user group by job; 思路同Select Aggregate Function的记录合并排序。 2、Group By Having Aggregate Function时 解决思路去掉having AF条件查询各分片然后把数据放到一张表里。再用group by having 聚合函数查询。 四、分布式数据库架构--排序分组分页参考解决方案 解决方案1Hadoop Hive。 思路使用Hadoop HDFS来存储数据通过Hdoop MapReduce完成数据计算通过Hive HQL语言使用部分与RDBBS一样的表格查询特性和分布式存储计算特性。 优点 可以解决问题 具有并发处理能力 可以离线处理 缺点 实时性不能保证 网络延迟会增加 异常捕获难度增加 Web应用起来比较复杂 解决方案2总库集中查询。 优点 可以解决问题 实现简单 缺点 总库数据不能太大 并发压力大 五、小结 对 于分布式数据库架构来说排序、分页、分组一直就是一个比较复杂的问题。避免此问题需要好好地设计分库、分表策略。同时根据特定的场景来解决问题。也可以 充分利用海量数据存储Hadoop-HDFS|Hive|HBse、搜索引擎Lucene|Solr及分布式计算MapReduce等技术来 解决问题。 别外也可以用NoSQL技术替代关系性数据库来解决问题比如MogonDB\redis。