网站建设dyfwzx,建设网站我们重中之重-用户体验,国内做设计的网站,主流网站模板云栖号资讯#xff1a;【点击查看更多行业资讯】 在这里您可以找到不同行业的第一手的上云资讯#xff0c;还在等什么#xff0c;快来#xff01; 老年人是疫情中的高危人群。美国疾病控制与预防中心3月18日发布的报告显示#xff0c;在美国#xff0c;约80%新冠肺炎死者… 云栖号资讯【点击查看更多行业资讯】 在这里您可以找到不同行业的第一手的上云资讯还在等什么快来 老年人是疫情中的高危人群。美国疾病控制与预防中心3月18日发布的报告显示在美国约80%新冠肺炎死者年龄大于65岁。在疫情隔离期间实时监控老年人的健康状况就显得尤为重要。
4月1日在斯坦福大学以人为本AI研究院HAI举办的“新冠肺炎和AI”直播活动上斯坦福大学教授谷歌前副总裁HAI联合主任李飞飞博士提出了一个家用AI系统的概念该系统可以在确保居民隐私的基础上追踪居民的健康状况监测新冠肺炎症状。
线上活动开始前李飞飞在朋友圈发布消息称“科学无国界病痛亦无国界。很多斯坦福大学的研究者们都在参与到新冠肺炎的研究中。仅仅与AI有关的就包括疾病的诊断治疗防疫公共卫生政府政策法律法规甚至人文影响地域歧视社会公正新闻自由等等方面的研究。这也包括了我自己斯坦福实验室过去近十年的AI和医疗健康研究尤其是手卫生和居家疾病管理。 该家用AI系统设计之初的目的是造福老年人尤其是独居老人让他们更好地享受到家庭成员或是医护工作者的照顾。在新冠疫情爆发期间保护老年人最佳的方式是减少与其他人的接触甚至包括那些时刻关照他们是否出现肺炎症状的人。该系统旨在实时追踪老年人健康状况的同时降低外界接触风险同时方便护理人员能够远程监测到老年人的基本身体状况因为很多老年人原本就存在各种健康问题。
李飞飞和团队在报告中表示他们的跨学科团队由临床医生和计算机科学家组成在新冠疫情爆发之前就已经着手这个项目了。“过去几年我们一直在研究AI技术如何帮助老年人更加独立地生活以及更好地应对慢性疾病。但是最近我们意识到同样用于长期护理的AI技术在应对新冠这样的急性流行病时对老年人也有所帮助。” 她说。 目前项目仍处于研究阶段。团队需要完成数据集的构建和模型的训练目前还不清楚这需要多长时间才能完成。但该系统最初是为老年人护理而设计在大规模隔离的时代将是健康监测的理想选择。
家用AI系统的隐私安全问题
该系统将由安装在家中的摄像头和智能传感器组成。报告概述了四种传感器 -- 摄像头、深度传感器、热传感器和可穿戴传感器(例如 FitBit)。李飞飞说他们的研究目前只集中在前三个方面。她承认隐私保护在这样的系统中至关重要因此摄像头的设置带来了较大的挑战。“摄像机传感器会记录大量个人活动的详细信息因此最可能会触及到人们个人隐私方面的需求”她说。
传感器捕获数据时系统会将数据发送至一个安全的中央服务器。李飞飞承认这一过程存在固有的安全风险比如网络攻击。在一封回复 VentureBeat的邮件中她强调研究人员在整个过程中都遵循隐私和安全准则。“例如我们的边缘设备都配备了磁盘加密数据将进行隐私属性删除(如面部模糊处理) 数据将在传输到云之前加密并且我们的服务器符合健康保险携带和责任法案HIPPA”她说。
一旦这些数据到达服务器团队中的临床医生和人工智能专家将对其进行分析和注释来开发一个机器学习模型。
“然后我们训练AI模型来识别临床相关的各种行为模式包括呼吸、睡眠、饮食和其他行为”李飞飞说。他们关注的行为模式是围绕日常生活活动中那些可能会引发健康状况恶化的行为。换句话说这个模型的重点是寻找特定的衡量指标。这并非针对居民所有日常活动的深入和广泛的分析李飞飞说训练AI模型的意义是为了实现实用性和隐私安全之间的平衡。
之后团队将训练好的模型部署到边缘设备上在那里监测系统可以在本地运行。这将创建一个闭环系统使得没有数据能够泄露出去。这本质上确保了数据安全却阻碍了在这个模型上进行任何进一步的训练。
研究人员想到了一个办法解决这一限制李飞飞在发给 VentureBeat 的电子邮件中进行了概述了。“我们设想每个边缘设备上的模型仍将不断更新以适应新的环境并通过联邦学习以无监督的方式提高鲁棒性。通过联邦学习我们将网络攻击的对象仅限于设备本身而不是设备和云以此来降低隐私和安全风险。”
联邦学习Federated Learning是一种新兴的人工智能基础技术在2016 年由谷歌最先提出原本用于解决安卓手机终端用户在本地更新模型的问题其设计目标是在保障大数据交换时的信息安全、保护终端数据和个人数据隐私、保证合法合规的前提下在多参与方或多计算结点之间开展高效率的机器学习。
最后一步该系统还需要将智能传感器的检测结果传递给医护人员或老人的家庭成员。李飞飞表示团队还没有找到具体的解决方案但是正在考虑使用APP或者网络界面这两者都可以通过双重身份验证来确保数据安全。
她强调: “这些传感器并不是用来做诊断决策或者取代临床医生的但是它们可以对住在家中的老年人进行实时不断的监测向临床医生和家庭成员及时发出健康预警”。
“当然在这项研究的每一步以及这项技术的部署过程中我们必须深入思考其中的每一项道德隐私和安全问题”她补充说。
当前疫情爆发不仅要关注老年人的安全和健康还要密切关注其他患者和隔离人员的情况。可以对系统的某些组成部分进行调整以便在不侵犯公民权利和隐私的情况下进行追踪。但李飞飞暂时不愿涉足这些领域她认为“我们的目标是利用最尖端的计算机视觉和机器学习技术以帮助解决一些最重要和最具挑战性的卫生保健问题并为人工智能卫生保健研究提出一个道德、隐私和安全指南。”
李飞飞说目前研究已经进展到下一阶段。他们已经在加州旧金山的一家疗养院完成了试点和当地一家名为On Lok的护理机构合作该机构致力于为老年人提供高质量的护理服务。
可穿戴设备实现非接触式监控
其他一些家用AI监控系统也涉及到可穿戴设备比如 Current Health、 iRhythm 和 LiveFreely。比如说iRhythm 公司研发的 Zio 心电贴片可以连续佩戴14天可提供连续心电监测。Care.ai 系统使用计算机视觉技术来实现非接触式监控理念和李飞飞团队相似但是Care.ai 系统主要是为医院服务的而非家庭护理。 从另一个角度讲当前社会隔离政策让独居老人也更加孤独。除了技术监测对于老年人来说更重要的还是家人的关心和线上陪伴吧
参考链接https://venturebeat.com/2020/04/06/stanford-researchers-propose-ai-in-home-system-that-can-monitor-for-coronavirus-symptoms/https://hai.stanford.edu/events/covid-19-and-ai-virtual-conference/overviewhttps://www.zhihu.com/topic/20935178/intro 【云栖号在线课堂】每天都有产品技术专家分享 课程地址https://yqh.aliyun.com/live 立即加入社群与专家面对面及时了解课程最新动态 【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK 原文链接 本文为云栖社区原创内容未经允许不得转载。