当前位置: 首页 > news >正文

建设网站哪家好在线制作logo图标软件

建设网站哪家好,在线制作logo图标软件,冠县网站设计,什么网站可以做兼职 知乎文章内容仅用于自己知识学习和分享#xff0c;如有侵权#xff0c;还请联系并删除 #xff1a;#xff09; 之前不太会用#xff0c;单纯想记录一下#xff0c;后面或许还会用到 1. 教程 [1] Pleasingly Parallel Programming: link 1.1 处理器#xff0c;核和线程 …文章内容仅用于自己知识学习和分享如有侵权还请联系并删除 之前不太会用单纯想记录一下后面或许还会用到 1. 教程 [1] Pleasingly Parallel Programming: link 1.1 处理器核和线程 Processors (CPUs), Cores, and Threads Microprocessor: an integrated circuit that contains the data processing logic and control for a computer. Multi-core processor: a microprocessor containing multiple processing units (cores) on a single integrated circuit. Each core in a multi-core processor can execute program instructions at the same time. Process: an instance of a computer program (including instructions, memory, and other resources) that is executed on a microprocessor. Thread: a thread of execution is the smallest sequence of program instructions that can be executed independently, and is typically a component of a process. The threads in a process can be executed concurrently and typically share the same memory space. They are faster to create than a process. Cluster: a set of multiple, physically distinct computing systems, each with its own microprocessors, memory, and storage resources, connected together by a (fast) network that allows the nodes to be viewed as a single system. 1.2 Parallelization with Dask 主要看了Dask 1.2.1 Dask简介 [2] Dask python库官方安装和使用教程 link [3] 中文 掘金 dask介绍 link 介绍了chunk [4] 中文 腾讯Python 数据科学 Dask.array并行计算的利器 link [5] 中文 风中飞舞Dask教程 数组 link (这个讲dask array和numpy array的区别以及chunk讲的很好) 定义 Dask is a tool that helps us easily extend our familiar python data analysis tools to medium and big data, i.e. dataset that can’t fit in our computer’s RAM. In many cases, dask also allows us to speed up our analysis by using mutiple CPU cores. Dask can help us work more efficiently on our laptop, and it can also help us scale up our analysis on HPC and cloud platforms. Most importantly, dask is almost invisible to the user, meaning that you can focus on your science, rather than the details of parallel computing. 数据结构 目前dask支持5种主要的数据结构目前dask支持5种主要的数据结构分别是 Array用于存放类numpy的多维数组DataFrame不用多说类pandas的二维表结构的数据帧Bag更简单的一个数组Delayed对函数的异步处理封装针对本地多进程与多线程Futures对函数的分布式异步提交处理封装比delayed多提供网络api 1.2.2 Dask和array [3] 中文 掘金 dask介绍 link 介绍了chunk [4] 中文 腾讯Python 数据科学 Dask.array并行计算的利器 link [5] 中文 风中飞舞Dask教程 数组 link (这个讲dask array和numpy array的区别以及chunk讲的很好) [6] 地学格网数据处理: Computing with Dask link 讲的很详细 [7] 地学格网数据处理 Basics of Xarray with Dask Parallization for Earth Data: link [8] 地学格网数据处理 : An Introduction to Earth and Environmental Data Science: link 为什么Dask array运算效率会比较高 ? 其实dask并没有真正的把所有分块后的数据读入内存只是在内存中存放了一个指针该指针指向了这些数据块,这里涉及一个重要概念–Delayed延迟计算 [3] Dask.array的核心设计思想之一是将数组拆分成小块并使用延迟计算的方式执行操作。这种分块策略有以下几个优势 [4] 处理大规模数据将数据拆分成小块可以使Dask.array处理比内存更大的数据集。每个小块可以在内存中处理从而有效地利用计算资源。 并行计算Dask.array可以利用多核或分布式系统来并行执行计算。每个小块可以在不同的处理器上并行计算从而加快计算速度。 节约资源Dask.array只在需要时执行计算避免了一次性加载整个数组到内存中节约了内存和计算资源 补充 [6] Dask array的区别和 numpy array的不同调用前不占空间, 直到we call .compute() on a dask array, the computation is trigger and the dask array becomes a numpy array. 补充[6] chunk的概念 The dask array representation reveals the concept of “chunks”. “Chunks” describes how the array is split into sub-arrays. We did not specify any chunks, so Dask just used one single chunk for the array. This is not much different from a numpy array at this point. 补充[8] 关于Distributed Clusters 分布式集群一个常见的错误是过早使用分布式模式。对于较小的数据分布式实际上比默认的多线程调度程序或根本不使用 Dask 要慢得多。只有当数据远大于计算机内存所能处理的容量时才应该使用分布式。 案例讲解 [6] Computing with Dask link 讲的很详细 1.2.3 Dask和xarray dask和xarry和rioxarray结合可以更高效的处理遥感数据 xarray 和dask的关系 Almost all of xarray’s built-in operations work on Dask arrays. link rioxarray 和dask的关系 rioxarray extends xarray with the rio accessor, which stands for “raster input and output. link [7] 地学格网数据处理 Basics of Xarray with Dask Parallization for Earth Data: link [8] 地学格网数据处理 : An Introduction to Earth and Environmental Data Science: link [9] 地学格网数据处理 : link xarray函数中没有自己想要的 作者主要介绍了了处理地学数据并行运算的两种情况: computation which is easily iterable over multiple files和computation which is not easily iterable over multiple files. A computation which simply needs to be replicated many times, such as applying the same computation to 1000 files. 对每个文件的操作都一样 The first schematic (below) shows an example for a common NASA Earthdata set format, where each file contains data for one timestamp, as well as spatial dimensions such as x1latitude, x2longitude. We want to apply a function F(x1,x2) to each file. Alternately, each file could correspond to a satellite orbit, and x1, x2 are the satellite cross-track and along-track dimensions. A computation which cannot trivially be replicated over multiple files, or over parts of a single file. 需要同时读取多个文件再处理 In the example of the NASA Earthdata set, where each file corresponds to a separate time stamp, this type of parallelization challenge could correspond to taking the mean and standard deviation over time at each latitude, longitude grid point (second schematic below). In this case, data from all the files is required to compute these quantities. Another example is an empirical orthogonal function (EOF) analysis, which needs to be performed on the entire 3D dataset as it extracts key modes of variability in both the time and spatial dimensions (third schematic). 结合链接[7]理解 结合链接[7]理解 import dask from dask.distributed import Client, LocalCluster# 1. 不够快 %%time #sstdata[analysed_sst].mean(dimtime).compute() # Un-comment to test computation time. # 2. 调用Clinent函数 # client Client() Client(n_workers2, threads_per_worker2, memory_limit1GB):# 参数含义 n_workers2: This tells the system to use 2 separate computers or cores to run your computations. 计算机的核。threads_per_worker2: This tells each of the 2 computers or cores to use 2 separate threads (or parts) to run the computations. This allows the computations to be split up and run in parallel, which can make them faster. memory_limit1GB: This tells the system to limit the amount of memory that each of the 2 computers or cores can use to 1 gigabyte (GB). This can be useful to prevent the system from using too much memory and slowing down.# 3. 调用后速度变快 %%time meansst_2dmap sstdata[analysed_sst].mean(dimtime).compute() 补充案例并行运算时候xarray函数中没有自己想要的函数解决方法 [9] link Custom workflows and automatic parallelization 方法1 Almost all of xarray’s built-in operations work on Dask arrays. If you want to use a function that isn’t wrapped by xarray, one option is to extract Dask arrays from xarray objects (.data) and use Dask directly. 方法2 Another option is to use xarray’s apply_ufunc() function, which can automate embarrassingly parallel “map” type operations where a function written for processing NumPy arrays should be repeatedly applied to xarray objects containing Dask arrays. It works similarly to dask.array.map_blocks() and dask.array.blockwise(), but without requiring an intermediate layer of abstraction. 一些想法 提高代码的运行效率主要从两个维度出发减小内存占用和并行。 dask: 先考虑读入数据内存占用。 dask数据结构的好处 dask array和 xarray只有调用的时候值得时候才会占用内存这是其相对于numpy的好处会减小内存的占用。 dask parallel: 再考虑如何提高计算效率计算效率可以结合并行。但是如果想让速度更快还是得用并行并行的方法可以直接调用dask库或者参考[9] link 参考文献 [1] Pleasingly Parallel Programming: link [2] Dask python库官方安装和使用教程 link [3] 中文 掘金 dask介绍 link 介绍了chunk [4] 中文 腾讯Python 数据科学 Dask.array并行计算的利器 link [5] 中文 风中飞舞Dask教程 数组 link (这个讲dask array和numpy array的区别以及chunk讲的很好) [6] 地学格网数据处理Computing with Dask link Dask array 讲的很详细 [7] 地学格网数据处理Basics of Xarray with Dask Parallization for Earth Data: link [8] 地学格网数据处理 : An Introduction to Earth and Environmental Data Science: link [9] 地学格网数据处理 : link xarray函数中没有自己想要的, 解决方法
http://www.zqtcl.cn/news/223679/

相关文章:

  • 简单网站建设规划方案物联网网站设计
  • 做360网站官网还是百度四川平台网站建设方案
  • 做网站的主题有哪些精品课程网站建设情况
  • 帝国网站开发电商平台搭建
  • 建设工程网站tcwordpress 标题入库
  • 网站开发简直广州网站制作后缀
  • 上海短视频seo优化网站wordpress 构建知识库
  • 做的网站图片不显示2018做网站赚钱不
  • 国内建站平台网站建设是什么科目
  • 响应式个人网站psd建设银行网站联系电话
  • 大型网站开发实战品牌网站建设费用要多少
  • 昆山网站建设昆山html5制作手机端页面
  • 做网站的国标有哪些达州网络推广
  • 站内seo和站外seo区别wordpress演示数据
  • 建设旅游网站财务分析创意设计公司网站
  • 张家港网站优化wordpress调用图片上传
  • 做网站要商标吗房产网站 设计方案
  • 做网站的费用怎么做账客户案例 网站建设
  • 怎么查询网站的备案号城乡建设杂志网站
  • 婚恋网站哪家做的最好北斗导航2022最新版手机版
  • 别墅效果图网站重庆金融公司网站建设
  • 中兴能源建设有限公司网站企业营销策划及推广
  • 外贸英文网站制作WordPress对接微信公众号
  • 推广网站建设花费得多少钱哪些平台可以发布软文
  • wordpress网站检测购物app大全
  • 遵义建设厅官方网站 元丰兰州网站设计有限公司
  • 芜湖做网站的公司排名贵阳好的网站建设公司
  • 网站建设 骏域网站建设专家最有效的15个营销方法
  • 大连品牌官网建站为什么有些网站更新的信息看不到
  • 富阳市网站域名申请好了怎么做网站