企业网站如何做推广,简单logo设计,企业cms建站系统,龙华app网站制作一、信道的定义与调制信道的数学模型
1.信道的定义与分类
信道#xff08;Channel#xff09;是指以传输媒质为基础的信号通道。根据新到的定义#xff0c;如果信道仅是指信号的传输媒质#xff0c;这种信道称为狭义信道#xff1b;如果这种信道不仅是传输媒质#xff…一、信道的定义与调制信道的数学模型
1.信道的定义与分类
信道Channel是指以传输媒质为基础的信号通道。根据新到的定义如果信道仅是指信号的传输媒质这种信道称为狭义信道如果这种信道不仅是传输媒质而且包括通信系统中的转换装置这种信道称为广义信道。
狭义信道按照传输媒质的特性可分为有线信道和无线信道。有线信道包括对称电缆、同轴电缆及光纤等。无线信道包括地波传播、短波电离层反射、超短波、移动无线电信道等。常把广义信道简称为信道。
广义信道按照它包括的功能可分为调制信道Modulated Channel、编码信道Coding Channel等。
2.调制信道模型
调制信道可以用一个二端口或多端口线性时变网络来表示这个网络便称为调制信道模型。
二端口的调制信道模型其输出与输入的关系有 根据信道传输函数C(w)的时变特性不同可以分两大类 设网络函数为H(w) ①C(w)基本不随时间变化即信道对信号的影响是固定的或变化极为缓慢的这类信道称为恒定参量信道简称恒参信道。 ②C(w)随时间随机快变化这类信道称为随机参量信道简称随参信道。
二、恒参信道与随参信道
信道特性主要由传输媒质所决定如果传输媒质是基本不随时间变化的所构成的广义信道通常属于恒参信道如果传输媒质随时间随机快变化则构成的广义信道通常属于随参信道。
1.恒参信道
如由电缆、中长波地波传播。超短波及微博视距传播、人造卫星中继、光导纤维以及光波视距传播等传输媒质构成的广义信道都属于恒参信道。 设K0为传输系数td为时间延迟均为常数则恒参信道的传输特性为 由此可见理想恒参信道对信号传输的影响是 ①对信号在幅度上产生固定的衰减 ②对信号在时间上产生固定时延 这种情况也称信号是无失真传输。
2.随参信道
随参信道是指信道传输特性随时间随机快速变化的信道。常见的随参信道有陆地移动信道、短波电离层反射信道、超短波及微波对流层散射信道以及超短波超视距绕射等信道。
随参信道的传输媒质具有以下三个特点 ①对信号的衰耗随时间随机变化 ②信号传输的时延随时间随机变化 ③多径传播
三、三种信道衰落模型
0.什么是衰落fading
对于S——D这样一个发送接收系统来说理想的无线信号传播自由空间传播模型是由S发送的电磁信号经过一定的衰减attenuation到达D点我们可以理解为信号沿着S—D的直线。虽然这样电磁波实际上是以球面波的形式向周围360度辐射但其是只有沿着S—D直线传播的信号才能抵达D点我们也可以把S—D路径称为直射路径。这是对于自由空间来说的在自由空间模型里面除了S和D什么也没有。
而对于实际的大气传播环境大气中包含着许多的小颗粒悬浮物或者小粒子。从S出发沿着非S—D方向的其它传播方向的额电磁波可能经过一系列的反射散射后而抵达接收端D我们把这种路径称为散射路径。由于每一条散射路径经历的路程都不一样这样他们抵达接收端的相位各不相同导致总的信号强度变低。这样我们把由于信号经过了多个路径而抵达接收端导致信号强度发生随机变化的现象称为衰落fading。
1.瑞利衰落信道模型 Rayleigh
假设发送信号为单一频率正弦波即 若不考虑直射路径多径信道共有n条路径各条路径具有时变衰耗和时变传输时延且从各条路径到达接收端的信号相互独立则接收端接受到的合成波为 式中ai(t)为从第i条路径到达接收端的信号振幅τi(t)为第i条路径的传输时延。传输时延可以转换为相位的形式即 为从第i条路径到达接收端的信号的随机相位。 r(t)也可表示为如下形式 由于X(t)和Y(t)都是相互独立的随机变量之后根据中心极限定理大量独立随机变量之和的分布趋于正态分布。因此当n足够大时X(t)和Y(t)都趋于正态分布。通常情况下X(t)和Y(t)的均值为0由于没有直射路径方差相等。这种表示方式也叫做同相-正交表示法。 r(t)也可以表示为如下形式 这种表达方式也称包络-相位表示法。易知V(t)的一维分布服从瑞利分布相位φ(t)的一维分布服从均匀分布。可表示为 由于包络服从瑞利分布故其称为瑞利信道模型。 对于陆地移动信道、短波电离层反射等随参信道其路径幅度ai(t)和相位函数φi(t)随时间变化与发射信号载波频率相比要缓慢得多。因此相对于载波来说V(t)和φ(t)是慢变化随机过程于是r(t)可以看成是一个窄带随机过程。由此得出以下两个结论 ①多径传播使单一的正弦信号变成了包络和相位受调制的窄带信号这种信号称为衰落信号即多径传播使信号产生瑞利型衰落多径衰落。 ②从频谱上看多径传播使单一谱线变成了窄带频谱即多径传播引起了频率弥散。
2.莱斯衰落信道模型Rician
当信道中存在一个固定的直射分量时X(t)与Y(t)的均值不再为0。其接收信号是复高斯信号和直射分量的叠加即正弦波加窄带高斯过程其包络的概率密度函数服从莱斯分布即下式 瑞利与莱斯分布于窄带高斯过程详见瑞利、莱斯分布于窄带高斯过程 https://blog.csdn.net/a493823882/article/details/78265414
3.Nakagami-m信道衰落模型
瑞利和莱斯分布与实验数据有时不太吻合因此人们提出了能吻合更多实验数据的一种更通用的信道衰落分布就是Nakagami-m衰落其分布为下式 Pr为平均功率T(m)为伽马函数m为衰落参数。m1时上式退化为瑞利衰落令则上式近似为衰落参数为K的瑞利衰落m∞m\inftym∞代表无衰落。改变m的值Nakagami衰落还可以转变为多种衰落模型。 ———————————————— 版权声明本文为CSDN博主「Norstc」的原创文章遵循CC 4.0 BY-SA版权协议转载请附上原文出处链接及本声明。 原文链接https://blog.csdn.net/a493823882/article/details/78264608