当前位置: 首页 > news >正文

京东网站建设的目标移动端模板 wordpress

京东网站建设的目标,移动端模板 wordpress,网站怎么做目录跳转,最佳线上网站制作模板一、说明 高斯混合模型 #xff08;GMM#xff09; 是一种基于概率密度估计的聚类分析技术。它假设数据点是由具有不同均值和方差的多个高斯分布的混合生成的。它可以在某些结果中提供有效的聚类结果。 二、Kmean算法有效性 K 均值聚类算法在每个聚类的中心周围放置一个圆形边… 一、说明 高斯混合模型 GMM 是一种基于概率密度估计的聚类分析技术。它假设数据点是由具有不同均值和方差的多个高斯分布的混合生成的。它可以在某些结果中提供有效的聚类结果。 二、Kmean算法有效性 K 均值聚类算法在每个聚类的中心周围放置一个圆形边界。当数据具有圆形时此方法非常有效。 import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeansnp.random.seed(42)def generate_circular(n_samples500):X np.concatenate((np.random.normal(0, 1, (n_samples, 2)),np.random.normal(5, 1, (n_samples, 2)),np.random.normal(10, 1, (n_samples, 2))))return XX generate_circular()kmeans KMeans(n_clusters3, random_state42) kmeans_labels kmeans.fit_predict(X)# boundaries of the cluster spheres radii [np.max(np.linalg.norm(X[kmeans_labels i, :] - kmeans.cluster_centers_[i, :], axis1))for i in range(3)]# plot fig, ax plt.subplots(ncols2, figsize(10, 4))ax[0].scatter(X[:, 0], X[:, 1]) ax[0].set_title(Data)ax[1].scatter(X[:, 0], X[:, 1], ckmeans_labels) ax[1].scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1],markerx, s200, linewidth3, colorr) for i in range(3):ax[1].add_artist(plt.Circle(kmeans.cluster_centers_[i, :], radiusradii[i], colorr, fillFalse, lw2)) ax[1].set_title(K Means Clustering)plt.show() K 表示具有圆形聚类的聚类。  但是当数据具有不同的形状如长方形或椭圆形时此方法可能无效。 import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeansnp.random.seed(42)def generate_elliptic(n_samples500):X np.concatenate((np.random.normal([0, 3], [0.3, 1], (n_samples, 2)),np.random.normal([2, 4], [0.3, 1], (n_samples, 2)),np.random.normal([4, 6], [0.4, 1], (n_samples, 2))))return XX generate_elliptic()kmeans KMeans(n_clusters3, random_state42) kmeans_labels kmeans.fit_predict(X) kmeans_cluster_centers kmeans.cluster_centers_# the radius of each cluster kmeans_cluster_radii [np.max(np.linalg.norm(X[kmeans_labels i, :] - kmeans.cluster_centers_[i, :], axis1))for i in range(3)]# plot fig, ax plt.subplots(ncols2, figsize(10, 4))ax[0].scatter(X[:, 0], X[:, 1]) ax[0].set_title(data)ax[1].scatter(X[:, 0], X[:, 1], ckmeans_labels) ax[1].scatter(kmeans_cluster_centers[:, 0], kmeans_cluster_centers[:, 1],markerx, s200, linewidth3, colorr) for i in range(3):circle plt.Circle(kmeans_cluster_centers[i], kmeans_cluster_radii[i], colorr, fillFalse)ax[1].add_artist(circle) ax[1].set_title(k-means clustering) plt.xlim(-4, 10) plt.ylim(-4, 10) plt.show() K 表示具有椭圆形状聚类的聚类 三、比K-mean更进步的GMM GMM 通过使用高斯分布表示聚类来扩展 K 均值模型。与 K 均值不同GMM 不仅捕获聚类的均值还捕获协方差允许对其椭圆体形状进行建模。为了拟合GMM我们使用期望最大化EM算法该算法最大化了观察到的数据的可能性。EM 类似于 K 均值但将数据点分配给具有软概率的聚类而不是硬赋值。 在高层次上GMM 结合了多个高斯分布来对数据进行建模。不是根据最近的质心来识别聚类而是将一组 k 高斯拟合到数据中并为每个聚类估计平均值、方差和权重等参数。了解每个数据点的参数后可以计算概率以确定该点属于哪个聚类。 每个分布都按权重因子 π 加权以考虑聚类中不同的样本数量。例如如果我们只有来自红色聚类的 1000 个数据点但来自绿色聚类的 100000 个数据点我们将对红色聚类分布进行更严格的权衡以确保它对整体分布产生重大影响。 组件。源 GMM算法由两个步骤组成期望E和最大化M。 第一步称为期望步骤或 E 步骤包括计算给定模型参数 πk μk 和 σk 的每个数据点 xi∈X 的组件分配 Ck 的期望。 第二步称为最大化步骤或M步骤它包括最大化E步骤中相对于模型参数计算的期望。此步骤包括更新值 πk、μk 和 σk。 整个迭代过程重复直到算法收敛给出最大似然估计。直观地说该算法之所以有效是因为知道每个 xi 的分量赋值 Ck 使得求解 πk μk 和 σk 变得容易而知道 πk μk σk 使得推断 pCk|xi 变得容易。 期望步骤对应于后一种情况而最大化步骤对应于前一种情况。因此通过在假定固定值或已知值之间交替可以有效地计算非固定值的最大似然估计值。 算法 使用随机或预定义值初始化平均值 μk、协方差矩阵 σk 和混合系数 πk。计算所有群集的组件分配 Ck。使用当前组件分配 Ck 估计所有参数。计算对数似然函数。设置收敛标准。如果对数似然值收敛到特定阈值或者所有参数都收敛到特定值请停止算法。否则请返回到步骤 2。 需要注意的是此算法保证收敛到局部最优值但不能确保此局部最优值也是全局最优值。因此如果算法从不同的初始化开始则可能会导致不同的配置。 四、python代码 from sklearn.mixture import GaussianMixture 参数 n_components是聚类数。covariance_type确定 GMM 使用的协方差矩阵的类型。它可以采用以下值 每个混合分量都有其通用协方差矩阵。所有混合分量共享相同的一般协方差矩阵。每个混料分量都有其对角协方差矩阵。每个混合分量都有其单个方差值从而生成球形协方差矩阵。fulltieddiagsphericaltol控制 EM 算法的收敛阈值。当对数可能性的改进低于此阈值时它将停止。reg_covar在协方差矩阵的对角线中添加正则化项以确保计算过程中的数值稳定性。它有助于防止条件不佳或奇异协方差矩阵的潜在问题。max_iter是 EM 迭代的次数。n_init控制模型参数的初始化。它可以采用以下值“kmeans初始均值是使用 K 均值算法估计的。random“从数据中随机选择初始均值并初始化协方差和混合系数。weights_init手动指定每个组分的初始权重混合系数。means_init手动指定每个分量的初始平均向量。precision_init手动指定每个分量的初始精度矩阵协方差矩阵的逆。 import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.cluster import KMeans from sklearn.mixture import GaussianMixturedef generate_elliptic(n_samples500):X np.concatenate((np.random.normal([0, 3], [0.3, 1], (n_samples, 2)),np.random.normal([2, 4], [0.3, 1], (n_samples, 2)),np.random.normal([4, 6], [0.4, 1], (n_samples, 2)) ))return XX generate_elliptic()# k-means clustering kmeans KMeans(n_clusters3, random_state0).fit(X) kmeans_labels kmeans.labels_# Gaussian mixture clustering gmm GaussianMixture(n_components3, random_state0).fit(X) gmm_labels gmm.predict(X)# Plot the clustering results fig, axs plt.subplots(1, 2, figsize(10, 5))axs[0].scatter(X[:, 0], X[:, 1], ckmeans_labels) axs[0].set_title(K-means clustering)axs[1].scatter(X[:, 0], X[:, 1], cgmm_labels) axs[1].set_title(Gaussian mixture clustering)plt.show() K-means vs Gaussian. Image by the author. print(Weights: , gmm.weights_) print(Means: , gmm.means_) print(Covariances: , gmm.covariances_) print(Precisions: , gmm.precisions_) Weights: [0.33300331 0.33410451 0.33289218] Means: [[ 1.98104152e00 3.95197560e00][ 3.98369464e00 5.93920471e00][-4.67796574e-03 2.97097723e00]] Covariances: [[[ 0.08521068 -0.00778594][-0.00778594 1.01699345]][[ 0.16066983 -0.01669341][-0.01669341 1.0383678 ]][[ 0.09482093 0.00709653][ 0.00709653 1.03641711]]] Precisions: [[[11.74383346 0.08990895][ 0.08990895 0.98397883]][[ 6.23435734 0.10022716][ 0.10022716 0.9646612 ]][[10.55160153 -0.07224865][-0.07224865 0.96535719]]]奥坎·耶尼根  五、结论 GMM 在处理复杂的数据分布、异构数据集或涉及密度估计的任务时特别有用。它们在建模和捕获数据底层结构方面提供了灵活性使其成为各种机器学习和数据分析任务中的宝贵工具。
http://www.zqtcl.cn/news/58653/

相关文章:

  • 湖南省专业建设公司网站的机构深圳高端网站定制公
  • 大连h5建站微信营销软件平台
  • 满满正能量网站外汇交易平台网站建设
  • 网站挑错做网站需要展示工厂么
  • 外贸公司手机网站民宿平台搜索量上涨
  • 长沙 公司网站城市建设网站设计
  • 建站教程流程图江门网站建设推广策划
  • 网站优化的策略大型网站建设兴田德润实惠
  • 网站公司如何推广网站2023年8月新闻热点事件
  • 做论坛网站价格做资源教程网站
  • 所有北京网站建设公司网站开发的策划方案
  • 电子商务网站建设策划方案水稻网站做go分析
  • 网站制作广全球十大搜索引擎入口
  • 天津网站开发培训wordpress 谷歌分析
  • wordpress vue网站济南微信网站
  • 如何做自己的网站后台深圳网站建设首选上榜网络
  • 网站建设字体颜色代码医院网站怎么做运营
  • 绵阳网站建设费用p2p网站建设小微金融
  • 网站建设相对路径典当行网站策划
  • 重庆网站建设公司多少钱网站建设需要提供的资料文档
  • 织梦做的网站前面有不安全app软件开发哪个公司好
  • 网站seo服务公司网站怎么规范管理的
  • 开源php企业网站上海集团网站建设咨询
  • 肇庆网站建设优化建筑人才网招聘网官网首页
  • 松江网站建设平台工友洗手粉网站建设中
  • windows 2012做网站伪静态国外产品展示网站源码
  • 网站做推广页需要什么软件下载桂林网站制作哪家好
  • 网站建设 爱诚科技北京网站建设公司如何排版
  • 网站建设与推广销售户话术网站建设安全标准
  • 微网站开发需要几个人聊城wap网站建设