当前位置: 首页 > news >正文

网站建设合同模板下载企业信息管理系统包括

网站建设合同模板下载,企业信息管理系统包括,网络营销的方式与手段,投百度做广告效果怎么样保姆级 Keras 实现 YOLO v3 一 一. YOLO v3 总览二. 特征提取网络特征提取网络代码实现 三. 特征融合特征融合代码实现 四. 网络输出模型输出代码实现 五. 网络模型代码实现六. 代码下载 如果要给 YOLO 目标检测算法一个评价的话, 就是快和准, 现在已经到了 v8, 但是我为什么还… 保姆级 Keras 实现 YOLO v3 一 一. YOLO v3 总览二. 特征提取网络特征提取网络代码实现 三. 特征融合特征融合代码实现 四. 网络输出模型输出代码实现 五. 网络模型代码实现六. 代码下载 如果要给 YOLO 目标检测算法一个评价的话, 就是快和准, 现在已经到了 v8, 但是我为什么还要写 v3 呢? 我觉得 v3 是一个节点, 承上启下的节点. 它有 v1 和 v2 的影子, 也为后面的其他版本奠定了基础. 对于教学或者学习 YOLO 是极好的 一. YOLO v3 总览 如果要给 YOLO v3 一个学习的策略的话, 我觉得从整体到局部比较合适, 我们把 YOLO v3 总结如下 相比于祥细的结构图, 这样的三个框就把 YOLO v3 概括完了. 后面我们再将各个部分拆开祥细说明, 这就是从整体到局部的策略 二. 特征提取网络 这是最容易实现的部分, 因为不会涉及到坐标计算与损失函数之类的东西, 只需要按结构用代码实现即可, 下面是结构图, 括号里面的数字是各方块输出的 shape 这个也不是祥细的结构图, 祥细的结构图还需要将各个方块展开, 前面的数字是 n 个这样的 Block 重复, 现在把 Conv Block 展开如下 Residual Block 展开如下 特征图的尺寸是输入图像的 1 32 1 \over 32 321​, 但是并没有用我们常见的 Pooling 来减小特征图尺寸, 而是使用步长为 2 的卷积层来实现的, 就是各个 Residual Block 之前的 Conv2D 层 Conv2D(kernel_size (3, 3), strides (2, 2), padding same)特征提取网络代码实现 因为结构有重复性, 所以可以定义一个函数来重复调用 # 定义 cbl (Conv2D, BatchNormalization, LeakyReLU) 函数 def cbl(inputs, filters, kernel_size):x keras.layers.Conv2D(filters filters, kernel_size kernel_size, strides (1, 1),padding valid if (1, 1) kernel_size else same)(inputs)x keras.layers.BatchNormalization()(x)x keras.layers.LeakyReLU(alpha 0.1)(x)return x接下来定义 Residual Block # 定义 residual_block 函数 # filters: 第一个 cbl 的卷积核数量, 第二个 cbl 卷积核数量自动乘 2 # repeats: 模块重复次数 def residual_block(inputs, filters, repeats):x inputsfor i in range(repeats):x cbl(x, filters, kernel_size (1, 1))x cbl(x, filters * 2, kernel_size (3, 3))x keras.layers.Add()([inputs, x])return x有了这两个函数, 就可以定义完整的特征提取网络 darknet # 定义 darn_net 函数 def dark_net(inputs None):x cbl(inputs, filters 32, kernel_size (3, 3))x keras.layers.Conv2D(filters 64, kernel_size (3, 3), strides (2, 2), padding same)(x)x residual_block(x, filters 32, repeats 1)x keras.layers.Conv2D(filters 128, kernel_size (3, 3), strides (2, 2), padding same)(x)x residual_block(x, filters 64, repeats 2)x keras.layers.Conv2D(filters 256, kernel_size (3, 3), strides (2, 2), padding same)(x)# 52 × 52 特征图x_52 residual_block(x, filters 128, repeats 8)x keras.layers.Conv2D(filters 512, kernel_size (3, 3), strides (2, 2), padding same)(x_52)# 26 × 26 特征图x_26 residual_block(x, filters 256, repeats 8)x keras.layers.Conv2D(filters 1024, kernel_size (3, 3), strides (2, 2), padding same)(x_26)# 13 × 13 特征图x_13 residual_block(x, filters 512, repeats 4)return x_13, x_26, x_52这样就和前面的结构图对上了, 函数输出 x_13, x_26, x_52 三层, 后面特征融合的时候会用到 三. 特征融合 这个也没有什么大问题, 只需要将上面的 13 × 13 特征图上采样放大与 26 × 26 特征图在最后一个维度拼接, 26 × 26 特征图上采样放大与 52 × 52 特征图在最后一个维度拼接, 如下图 特征融合代码实现 特征融合 Conv Block 部分也有很多重复的方块, 所以可以定义成一个函数方便调用 # 定义 cbl block 函数 # filters: 第一个 block 的卷积核数量, 其他会自动计算 def cbl_block(inputs, filters):x cbl(inputs, filters, kernel_size (1, 1))x cbl(x, filters * 2, kernel_size (3, 3))x cbl(x, filters, kernel_size (1, 1))x cbl(x, filters * 2, kernel_size (3, 3))x cbl(x, filters, kernel_size (1, 1))return x总的特征融合函数如下 # 定义 neck 函数 def neck(inputs None):x_13, x_26, x_52 inputsfeature cbl_block(x_13, 512)feature cbl(feature, filters 256, kernel_size (1, 1))feature keras.layers.UpSampling2D(size (2, 2), interpolation bilinear)(feature)feature keras.layers.Concatenate(axis -1)([feature, x_26])x_26 cbl_block(feature, 256)feature cbl(x_26, filters 128, kernel_size (1, 1))feature keras.layers.UpSampling2D(size (2, 2), interpolation bilinear)(feature)feature keras.layers.Concatenate(axis -1)([feature, x_52])x_52 cbl_block(feature, 128)return x_13, x_26, x_52四. 网络输出 这部分就更简单了, 将融合后的特征图做卷积, 变换到对应的通道数, 因为我要训练的数据集是 VOC2007, 所以输出通道数为 75 (4 1 20) × 3. 模型结构如下 模型输出代码实现 输出函数如下, 输入是三个融合后的特征图 # 定义 head 函数 def head(inputs, filters):x_13, x_26, x_52 inputsx_13 cbl(x_13, 1024, kernel_size (3, 3))x_13 cbl(x_13, filters, kernel_size (1, 1))x_26 cbl(x_26, 512, kernel_size (3, 3))x_26 cbl(x_26, filters, kernel_size (1, 1))x_52 cbl(x_52, 256, kernel_size (3, 3))x_52 cbl(x_52, filters, kernel_size (1, 1))return x_13, x_26, x_52五. 网络模型代码实现 有了上面的相应的函数之后, 定义完整的模型就变得很简单了, 由 dark_net, neck, head 三部分构成 # 模型定义 image keras.layers.Input(shape (416, 416, 3), name input)x_13, x_26, x_52 dark_net(inputs image) x_13, x_26, x_52 neck([x_13, x_26, x_52]) x_13, x_26, x_52 head([x_13, x_26, x_52], filters 75)model keras.Model(inputs image,outputs [x_13, x_26, x_52],name yolov3) model.summary()Model: yolov3 __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to input (InputLayer) [(None, 416, 416, 3) 0 __________________________________________________________________________________________________ conv2d (Conv2D) (None, 416, 416, 32) 896 input[0][0] __________________________________________________________________________________________________ batch_normalization (BatchNorma (None, 416, 416, 32) 128 conv2d[0][0] __________________________________________________________________________________________________ leaky_re_lu (LeakyReLU) (None, 416, 416, 32) 0 batch_normalization[0][0] __________________________________________________________________________________________________ conv2d_1 (Conv2D) (None, 208, 208, 64) 18496 leaky_re_lu[0][0] __________________________________________________________________________________________________ conv2d_2 (Conv2D) (None, 208, 208, 32) 2080 conv2d_1[0][0] __________________________________________________________________________________________________ batch_normalization_1 (BatchNor (None, 208, 208, 32) 128 conv2d_2[0][0] __________________________________________________________________________________________________ leaky_re_lu_1 (LeakyReLU) (None, 208, 208, 32) 0 batch_normalization_1[0][0] __________________________________________________________________________________________________ conv2d_3 (Conv2D) (None, 208, 208, 64) 18496 leaky_re_lu_1[0][0] __________________________________________________________________________________________________ batch_normalization_2 (BatchNor (None, 208, 208, 64) 256 conv2d_3[0][0] __________________________________________________________________________________________________ leaky_re_lu_2 (LeakyReLU) (None, 208, 208, 64) 0 batch_normalization_2[0][0] __________________________________________________________________________________________________ add (Add) (None, 208, 208, 64) 0 conv2d_1[0][0] leaky_re_lu_2[0][0] __________________________________________________________________________________________________ conv2d_4 (Conv2D) (None, 104, 104, 128 73856 add[0][0] __________________________________________________________________________________________________ conv2d_5 (Conv2D) (None, 104, 104, 64) 8256 conv2d_4[0][0] __________________________________________________________________________________________________ batch_normalization_3 (BatchNor (None, 104, 104, 64) 256 conv2d_5[0][0] __________________________________________________________________________________________________ leaky_re_lu_3 (LeakyReLU) (None, 104, 104, 64) 0 batch_normalization_3[0][0] __________________________________________________________________________________________________ conv2d_6 (Conv2D) (None, 104, 104, 128 73856 leaky_re_lu_3[0][0] __________________________________________________________________________________________________ batch_normalization_4 (BatchNor (None, 104, 104, 128 512 conv2d_6[0][0] __________________________________________________________________________________________________ leaky_re_lu_4 (LeakyReLU) (None, 104, 104, 128 0 batch_normalization_4[0][0] __________________________________________________________________________________________________ add_1 (Add) (None, 104, 104, 128 0 conv2d_4[0][0] leaky_re_lu_4[0][0] __________________________________________________________________________________________________ conv2d_7 (Conv2D) (None, 104, 104, 64) 8256 add_1[0][0] __________________________________________________________________________________________________ batch_normalization_5 (BatchNor (None, 104, 104, 64) 256 conv2d_7[0][0] __________________________________________________________________________________________________ leaky_re_lu_5 (LeakyReLU) (None, 104, 104, 64) 0 batch_normalization_5[0][0] __________________________________________________________________________________________________ conv2d_8 (Conv2D) (None, 104, 104, 128 73856 leaky_re_lu_5[0][0] __________________________________________________________________________________________________ batch_normalization_6 (BatchNor (None, 104, 104, 128 512 conv2d_8[0][0] __________________________________________________________________________________________________ leaky_re_lu_6 (LeakyReLU) (None, 104, 104, 128 0 batch_normalization_6[0][0] __________________________________________________________________________________________________ add_2 (Add) (None, 104, 104, 128 0 conv2d_4[0][0] leaky_re_lu_6[0][0] __________________________________________________________________________________________________ conv2d_9 (Conv2D) (None, 52, 52, 256) 295168 add_2[0][0] __________________________________________________________________________________________________ conv2d_10 (Conv2D) (None, 52, 52, 128) 32896 conv2d_9[0][0] __________________________________________________________________________________________________ batch_normalization_7 (BatchNor (None, 52, 52, 128) 512 conv2d_10[0][0] __________________________________________________________________________________________________ leaky_re_lu_7 (LeakyReLU) (None, 52, 52, 128) 0 batch_normalization_7[0][0] __________________________________________________________________________________________________ conv2d_11 (Conv2D) (None, 52, 52, 256) 295168 leaky_re_lu_7[0][0] __________________________________________________________________________________________________ batch_normalization_8 (BatchNor (None, 52, 52, 256) 1024 conv2d_11[0][0] __________________________________________________________________________________________________ leaky_re_lu_8 (LeakyReLU) (None, 52, 52, 256) 0 batch_normalization_8[0][0] __________________________________________________________________________________________________ add_3 (Add) (None, 52, 52, 256) 0 conv2d_9[0][0] leaky_re_lu_8[0][0] __________________________________________________________________________________________________ conv2d_12 (Conv2D) (None, 52, 52, 128) 32896 add_3[0][0] __________________________________________________________________________________________________ batch_normalization_9 (BatchNor (None, 52, 52, 128) 512 conv2d_12[0][0] __________________________________________________________________________________________________ leaky_re_lu_9 (LeakyReLU) (None, 52, 52, 128) 0 batch_normalization_9[0][0] __________________________________________________________________________________________________ conv2d_13 (Conv2D) (None, 52, 52, 256) 295168 leaky_re_lu_9[0][0] __________________________________________________________________________________________________ batch_normalization_10 (BatchNo (None, 52, 52, 256) 1024 conv2d_13[0][0] __________________________________________________________________________________________________ leaky_re_lu_10 (LeakyReLU) (None, 52, 52, 256) 0 batch_normalization_10[0][0] __________________________________________________________________________________________________ add_4 (Add) (None, 52, 52, 256) 0 conv2d_9[0][0] leaky_re_lu_10[0][0] __________________________________________________________________________________________________ conv2d_14 (Conv2D) (None, 52, 52, 128) 32896 add_4[0][0] __________________________________________________________________________________________________ batch_normalization_11 (BatchNo (None, 52, 52, 128) 512 conv2d_14[0][0] __________________________________________________________________________________________________ leaky_re_lu_11 (LeakyReLU) (None, 52, 52, 128) 0 batch_normalization_11[0][0] __________________________________________________________________________________________________ conv2d_15 (Conv2D) (None, 52, 52, 256) 295168 leaky_re_lu_11[0][0] __________________________________________________________________________________________________ batch_normalization_12 (BatchNo (None, 52, 52, 256) 1024 conv2d_15[0][0] __________________________________________________________________________________________________ leaky_re_lu_12 (LeakyReLU) (None, 52, 52, 256) 0 batch_normalization_12[0][0] __________________________________________________________________________________________________ add_5 (Add) (None, 52, 52, 256) 0 conv2d_9[0][0] leaky_re_lu_12[0][0] __________________________________________________________________________________________________ conv2d_16 (Conv2D) (None, 52, 52, 128) 32896 add_5[0][0] __________________________________________________________________________________________________ batch_normalization_13 (BatchNo (None, 52, 52, 128) 512 conv2d_16[0][0] __________________________________________________________________________________________________ leaky_re_lu_13 (LeakyReLU) (None, 52, 52, 128) 0 batch_normalization_13[0][0] __________________________________________________________________________________________________ conv2d_17 (Conv2D) (None, 52, 52, 256) 295168 leaky_re_lu_13[0][0] __________________________________________________________________________________________________ batch_normalization_14 (BatchNo (None, 52, 52, 256) 1024 conv2d_17[0][0] __________________________________________________________________________________________________ leaky_re_lu_14 (LeakyReLU) (None, 52, 52, 256) 0 batch_normalization_14[0][0] __________________________________________________________________________________________________ add_6 (Add) (None, 52, 52, 256) 0 conv2d_9[0][0] leaky_re_lu_14[0][0] __________________________________________________________________________________________________ conv2d_18 (Conv2D) (None, 52, 52, 128) 32896 add_6[0][0] __________________________________________________________________________________________________ batch_normalization_15 (BatchNo (None, 52, 52, 128) 512 conv2d_18[0][0] __________________________________________________________________________________________________ leaky_re_lu_15 (LeakyReLU) (None, 52, 52, 128) 0 batch_normalization_15[0][0] __________________________________________________________________________________________________ conv2d_19 (Conv2D) (None, 52, 52, 256) 295168 leaky_re_lu_15[0][0] __________________________________________________________________________________________________ batch_normalization_16 (BatchNo (None, 52, 52, 256) 1024 conv2d_19[0][0] __________________________________________________________________________________________________ leaky_re_lu_16 (LeakyReLU) (None, 52, 52, 256) 0 batch_normalization_16[0][0] __________________________________________________________________________________________________ add_7 (Add) (None, 52, 52, 256) 0 conv2d_9[0][0] leaky_re_lu_16[0][0] __________________________________________________________________________________________________ conv2d_20 (Conv2D) (None, 52, 52, 128) 32896 add_7[0][0] __________________________________________________________________________________________________ batch_normalization_17 (BatchNo (None, 52, 52, 128) 512 conv2d_20[0][0] __________________________________________________________________________________________________ leaky_re_lu_17 (LeakyReLU) (None, 52, 52, 128) 0 batch_normalization_17[0][0] __________________________________________________________________________________________________ conv2d_21 (Conv2D) (None, 52, 52, 256) 295168 leaky_re_lu_17[0][0] __________________________________________________________________________________________________ batch_normalization_18 (BatchNo (None, 52, 52, 256) 1024 conv2d_21[0][0] __________________________________________________________________________________________________ leaky_re_lu_18 (LeakyReLU) (None, 52, 52, 256) 0 batch_normalization_18[0][0] __________________________________________________________________________________________________ add_8 (Add) (None, 52, 52, 256) 0 conv2d_9[0][0] leaky_re_lu_18[0][0] __________________________________________________________________________________________________ conv2d_22 (Conv2D) (None, 52, 52, 128) 32896 add_8[0][0] __________________________________________________________________________________________________ batch_normalization_19 (BatchNo (None, 52, 52, 128) 512 conv2d_22[0][0] __________________________________________________________________________________________________ leaky_re_lu_19 (LeakyReLU) (None, 52, 52, 128) 0 batch_normalization_19[0][0] __________________________________________________________________________________________________ conv2d_23 (Conv2D) (None, 52, 52, 256) 295168 leaky_re_lu_19[0][0] __________________________________________________________________________________________________ batch_normalization_20 (BatchNo (None, 52, 52, 256) 1024 conv2d_23[0][0] __________________________________________________________________________________________________ leaky_re_lu_20 (LeakyReLU) (None, 52, 52, 256) 0 batch_normalization_20[0][0] __________________________________________________________________________________________________ add_9 (Add) (None, 52, 52, 256) 0 conv2d_9[0][0] leaky_re_lu_20[0][0] __________________________________________________________________________________________________ conv2d_24 (Conv2D) (None, 52, 52, 128) 32896 add_9[0][0] __________________________________________________________________________________________________ batch_normalization_21 (BatchNo (None, 52, 52, 128) 512 conv2d_24[0][0] __________________________________________________________________________________________________ leaky_re_lu_21 (LeakyReLU) (None, 52, 52, 128) 0 batch_normalization_21[0][0] __________________________________________________________________________________________________ conv2d_25 (Conv2D) (None, 52, 52, 256) 295168 leaky_re_lu_21[0][0] __________________________________________________________________________________________________ batch_normalization_22 (BatchNo (None, 52, 52, 256) 1024 conv2d_25[0][0] __________________________________________________________________________________________________ leaky_re_lu_22 (LeakyReLU) (None, 52, 52, 256) 0 batch_normalization_22[0][0] __________________________________________________________________________________________________ add_10 (Add) (None, 52, 52, 256) 0 conv2d_9[0][0] leaky_re_lu_22[0][0] __________________________________________________________________________________________________ conv2d_26 (Conv2D) (None, 26, 26, 512) 1180160 add_10[0][0] __________________________________________________________________________________________________ conv2d_27 (Conv2D) (None, 26, 26, 256) 131328 conv2d_26[0][0] __________________________________________________________________________________________________ batch_normalization_23 (BatchNo (None, 26, 26, 256) 1024 conv2d_27[0][0] __________________________________________________________________________________________________ leaky_re_lu_23 (LeakyReLU) (None, 26, 26, 256) 0 batch_normalization_23[0][0] __________________________________________________________________________________________________ conv2d_28 (Conv2D) (None, 26, 26, 512) 1180160 leaky_re_lu_23[0][0] __________________________________________________________________________________________________ batch_normalization_24 (BatchNo (None, 26, 26, 512) 2048 conv2d_28[0][0] __________________________________________________________________________________________________ leaky_re_lu_24 (LeakyReLU) (None, 26, 26, 512) 0 batch_normalization_24[0][0] __________________________________________________________________________________________________ add_11 (Add) (None, 26, 26, 512) 0 conv2d_26[0][0] leaky_re_lu_24[0][0] __________________________________________________________________________________________________ conv2d_29 (Conv2D) (None, 26, 26, 256) 131328 add_11[0][0] __________________________________________________________________________________________________ batch_normalization_25 (BatchNo (None, 26, 26, 256) 1024 conv2d_29[0][0] __________________________________________________________________________________________________ leaky_re_lu_25 (LeakyReLU) (None, 26, 26, 256) 0 batch_normalization_25[0][0] __________________________________________________________________________________________________ conv2d_30 (Conv2D) (None, 26, 26, 512) 1180160 leaky_re_lu_25[0][0] __________________________________________________________________________________________________ batch_normalization_26 (BatchNo (None, 26, 26, 512) 2048 conv2d_30[0][0] __________________________________________________________________________________________________ leaky_re_lu_26 (LeakyReLU) (None, 26, 26, 512) 0 batch_normalization_26[0][0] __________________________________________________________________________________________________ add_12 (Add) (None, 26, 26, 512) 0 conv2d_26[0][0] leaky_re_lu_26[0][0] __________________________________________________________________________________________________ conv2d_31 (Conv2D) (None, 26, 26, 256) 131328 add_12[0][0] __________________________________________________________________________________________________ batch_normalization_27 (BatchNo (None, 26, 26, 256) 1024 conv2d_31[0][0] __________________________________________________________________________________________________ leaky_re_lu_27 (LeakyReLU) (None, 26, 26, 256) 0 batch_normalization_27[0][0] __________________________________________________________________________________________________ conv2d_32 (Conv2D) (None, 26, 26, 512) 1180160 leaky_re_lu_27[0][0] __________________________________________________________________________________________________ batch_normalization_28 (BatchNo (None, 26, 26, 512) 2048 conv2d_32[0][0] __________________________________________________________________________________________________ leaky_re_lu_28 (LeakyReLU) (None, 26, 26, 512) 0 batch_normalization_28[0][0] __________________________________________________________________________________________________ add_13 (Add) (None, 26, 26, 512) 0 conv2d_26[0][0] leaky_re_lu_28[0][0] __________________________________________________________________________________________________ conv2d_33 (Conv2D) (None, 26, 26, 256) 131328 add_13[0][0] __________________________________________________________________________________________________ batch_normalization_29 (BatchNo (None, 26, 26, 256) 1024 conv2d_33[0][0] __________________________________________________________________________________________________ leaky_re_lu_29 (LeakyReLU) (None, 26, 26, 256) 0 batch_normalization_29[0][0] __________________________________________________________________________________________________ conv2d_34 (Conv2D) (None, 26, 26, 512) 1180160 leaky_re_lu_29[0][0] __________________________________________________________________________________________________ batch_normalization_30 (BatchNo (None, 26, 26, 512) 2048 conv2d_34[0][0] __________________________________________________________________________________________________ leaky_re_lu_30 (LeakyReLU) (None, 26, 26, 512) 0 batch_normalization_30[0][0] __________________________________________________________________________________________________ add_14 (Add) (None, 26, 26, 512) 0 conv2d_26[0][0] leaky_re_lu_30[0][0] __________________________________________________________________________________________________ conv2d_35 (Conv2D) (None, 26, 26, 256) 131328 add_14[0][0] __________________________________________________________________________________________________ batch_normalization_31 (BatchNo (None, 26, 26, 256) 1024 conv2d_35[0][0] __________________________________________________________________________________________________ leaky_re_lu_31 (LeakyReLU) (None, 26, 26, 256) 0 batch_normalization_31[0][0] __________________________________________________________________________________________________ conv2d_36 (Conv2D) (None, 26, 26, 512) 1180160 leaky_re_lu_31[0][0] __________________________________________________________________________________________________ batch_normalization_32 (BatchNo (None, 26, 26, 512) 2048 conv2d_36[0][0] __________________________________________________________________________________________________ leaky_re_lu_32 (LeakyReLU) (None, 26, 26, 512) 0 batch_normalization_32[0][0] __________________________________________________________________________________________________ add_15 (Add) (None, 26, 26, 512) 0 conv2d_26[0][0] leaky_re_lu_32[0][0] __________________________________________________________________________________________________ conv2d_37 (Conv2D) (None, 26, 26, 256) 131328 add_15[0][0] __________________________________________________________________________________________________ batch_normalization_33 (BatchNo (None, 26, 26, 256) 1024 conv2d_37[0][0] __________________________________________________________________________________________________ leaky_re_lu_33 (LeakyReLU) (None, 26, 26, 256) 0 batch_normalization_33[0][0] __________________________________________________________________________________________________ conv2d_38 (Conv2D) (None, 26, 26, 512) 1180160 leaky_re_lu_33[0][0] __________________________________________________________________________________________________ batch_normalization_34 (BatchNo (None, 26, 26, 512) 2048 conv2d_38[0][0] __________________________________________________________________________________________________ leaky_re_lu_34 (LeakyReLU) (None, 26, 26, 512) 0 batch_normalization_34[0][0] __________________________________________________________________________________________________ add_16 (Add) (None, 26, 26, 512) 0 conv2d_26[0][0] leaky_re_lu_34[0][0] __________________________________________________________________________________________________ conv2d_39 (Conv2D) (None, 26, 26, 256) 131328 add_16[0][0] __________________________________________________________________________________________________ batch_normalization_35 (BatchNo (None, 26, 26, 256) 1024 conv2d_39[0][0] __________________________________________________________________________________________________ leaky_re_lu_35 (LeakyReLU) (None, 26, 26, 256) 0 batch_normalization_35[0][0] __________________________________________________________________________________________________ conv2d_40 (Conv2D) (None, 26, 26, 512) 1180160 leaky_re_lu_35[0][0] __________________________________________________________________________________________________ batch_normalization_36 (BatchNo (None, 26, 26, 512) 2048 conv2d_40[0][0] __________________________________________________________________________________________________ leaky_re_lu_36 (LeakyReLU) (None, 26, 26, 512) 0 batch_normalization_36[0][0] __________________________________________________________________________________________________ add_17 (Add) (None, 26, 26, 512) 0 conv2d_26[0][0] leaky_re_lu_36[0][0] __________________________________________________________________________________________________ conv2d_41 (Conv2D) (None, 26, 26, 256) 131328 add_17[0][0] __________________________________________________________________________________________________ batch_normalization_37 (BatchNo (None, 26, 26, 256) 1024 conv2d_41[0][0] __________________________________________________________________________________________________ leaky_re_lu_37 (LeakyReLU) (None, 26, 26, 256) 0 batch_normalization_37[0][0] __________________________________________________________________________________________________ conv2d_42 (Conv2D) (None, 26, 26, 512) 1180160 leaky_re_lu_37[0][0] __________________________________________________________________________________________________ batch_normalization_38 (BatchNo (None, 26, 26, 512) 2048 conv2d_42[0][0] __________________________________________________________________________________________________ leaky_re_lu_38 (LeakyReLU) (None, 26, 26, 512) 0 batch_normalization_38[0][0] __________________________________________________________________________________________________ add_18 (Add) (None, 26, 26, 512) 0 conv2d_26[0][0] leaky_re_lu_38[0][0] __________________________________________________________________________________________________ conv2d_43 (Conv2D) (None, 13, 13, 1024) 4719616 add_18[0][0] __________________________________________________________________________________________________ conv2d_44 (Conv2D) (None, 13, 13, 512) 524800 conv2d_43[0][0] __________________________________________________________________________________________________ batch_normalization_39 (BatchNo (None, 13, 13, 512) 2048 conv2d_44[0][0] __________________________________________________________________________________________________ leaky_re_lu_39 (LeakyReLU) (None, 13, 13, 512) 0 batch_normalization_39[0][0] __________________________________________________________________________________________________ conv2d_45 (Conv2D) (None, 13, 13, 1024) 4719616 leaky_re_lu_39[0][0] __________________________________________________________________________________________________ batch_normalization_40 (BatchNo (None, 13, 13, 1024) 4096 conv2d_45[0][0] __________________________________________________________________________________________________ leaky_re_lu_40 (LeakyReLU) (None, 13, 13, 1024) 0 batch_normalization_40[0][0] __________________________________________________________________________________________________ add_19 (Add) (None, 13, 13, 1024) 0 conv2d_43[0][0] leaky_re_lu_40[0][0] __________________________________________________________________________________________________ conv2d_46 (Conv2D) (None, 13, 13, 512) 524800 add_19[0][0] __________________________________________________________________________________________________ batch_normalization_41 (BatchNo (None, 13, 13, 512) 2048 conv2d_46[0][0] __________________________________________________________________________________________________ leaky_re_lu_41 (LeakyReLU) (None, 13, 13, 512) 0 batch_normalization_41[0][0] __________________________________________________________________________________________________ conv2d_47 (Conv2D) (None, 13, 13, 1024) 4719616 leaky_re_lu_41[0][0] __________________________________________________________________________________________________ batch_normalization_42 (BatchNo (None, 13, 13, 1024) 4096 conv2d_47[0][0] __________________________________________________________________________________________________ leaky_re_lu_42 (LeakyReLU) (None, 13, 13, 1024) 0 batch_normalization_42[0][0] __________________________________________________________________________________________________ add_20 (Add) (None, 13, 13, 1024) 0 conv2d_43[0][0] leaky_re_lu_42[0][0] __________________________________________________________________________________________________ conv2d_48 (Conv2D) (None, 13, 13, 512) 524800 add_20[0][0] __________________________________________________________________________________________________ batch_normalization_43 (BatchNo (None, 13, 13, 512) 2048 conv2d_48[0][0] __________________________________________________________________________________________________ leaky_re_lu_43 (LeakyReLU) (None, 13, 13, 512) 0 batch_normalization_43[0][0] __________________________________________________________________________________________________ conv2d_49 (Conv2D) (None, 13, 13, 1024) 4719616 leaky_re_lu_43[0][0] __________________________________________________________________________________________________ batch_normalization_44 (BatchNo (None, 13, 13, 1024) 4096 conv2d_49[0][0] __________________________________________________________________________________________________ leaky_re_lu_44 (LeakyReLU) (None, 13, 13, 1024) 0 batch_normalization_44[0][0] __________________________________________________________________________________________________ add_21 (Add) (None, 13, 13, 1024) 0 conv2d_43[0][0] leaky_re_lu_44[0][0] __________________________________________________________________________________________________ conv2d_50 (Conv2D) (None, 13, 13, 512) 524800 add_21[0][0] __________________________________________________________________________________________________ batch_normalization_45 (BatchNo (None, 13, 13, 512) 2048 conv2d_50[0][0] __________________________________________________________________________________________________ leaky_re_lu_45 (LeakyReLU) (None, 13, 13, 512) 0 batch_normalization_45[0][0] __________________________________________________________________________________________________ conv2d_51 (Conv2D) (None, 13, 13, 1024) 4719616 leaky_re_lu_45[0][0] __________________________________________________________________________________________________ batch_normalization_46 (BatchNo (None, 13, 13, 1024) 4096 conv2d_51[0][0] __________________________________________________________________________________________________ leaky_re_lu_46 (LeakyReLU) (None, 13, 13, 1024) 0 batch_normalization_46[0][0] __________________________________________________________________________________________________ add_22 (Add) (None, 13, 13, 1024) 0 conv2d_43[0][0] leaky_re_lu_46[0][0] __________________________________________________________________________________________________ conv2d_52 (Conv2D) (None, 13, 13, 512) 524800 add_22[0][0] __________________________________________________________________________________________________ batch_normalization_47 (BatchNo (None, 13, 13, 512) 2048 conv2d_52[0][0] __________________________________________________________________________________________________ leaky_re_lu_47 (LeakyReLU) (None, 13, 13, 512) 0 batch_normalization_47[0][0] __________________________________________________________________________________________________ conv2d_53 (Conv2D) (None, 13, 13, 1024) 4719616 leaky_re_lu_47[0][0] __________________________________________________________________________________________________ batch_normalization_48 (BatchNo (None, 13, 13, 1024) 4096 conv2d_53[0][0] __________________________________________________________________________________________________ leaky_re_lu_48 (LeakyReLU) (None, 13, 13, 1024) 0 batch_normalization_48[0][0] __________________________________________________________________________________________________ conv2d_54 (Conv2D) (None, 13, 13, 512) 524800 leaky_re_lu_48[0][0] __________________________________________________________________________________________________ batch_normalization_49 (BatchNo (None, 13, 13, 512) 2048 conv2d_54[0][0] __________________________________________________________________________________________________ leaky_re_lu_49 (LeakyReLU) (None, 13, 13, 512) 0 batch_normalization_49[0][0] __________________________________________________________________________________________________ conv2d_55 (Conv2D) (None, 13, 13, 1024) 4719616 leaky_re_lu_49[0][0] __________________________________________________________________________________________________ batch_normalization_50 (BatchNo (None, 13, 13, 1024) 4096 conv2d_55[0][0] __________________________________________________________________________________________________ leaky_re_lu_50 (LeakyReLU) (None, 13, 13, 1024) 0 batch_normalization_50[0][0] __________________________________________________________________________________________________ conv2d_56 (Conv2D) (None, 13, 13, 512) 524800 leaky_re_lu_50[0][0] __________________________________________________________________________________________________ batch_normalization_51 (BatchNo (None, 13, 13, 512) 2048 conv2d_56[0][0] __________________________________________________________________________________________________ leaky_re_lu_51 (LeakyReLU) (None, 13, 13, 512) 0 batch_normalization_51[0][0] __________________________________________________________________________________________________ conv2d_57 (Conv2D) (None, 13, 13, 256) 131328 leaky_re_lu_51[0][0] __________________________________________________________________________________________________ batch_normalization_52 (BatchNo (None, 13, 13, 256) 1024 conv2d_57[0][0] __________________________________________________________________________________________________ leaky_re_lu_52 (LeakyReLU) (None, 13, 13, 256) 0 batch_normalization_52[0][0] __________________________________________________________________________________________________ up_sampling2d (UpSampling2D) (None, 26, 26, 256) 0 leaky_re_lu_52[0][0] __________________________________________________________________________________________________ concatenate (Concatenate) (None, 26, 26, 768) 0 up_sampling2d[0][0] add_18[0][0] __________________________________________________________________________________________________ conv2d_58 (Conv2D) (None, 26, 26, 256) 196864 concatenate[0][0] __________________________________________________________________________________________________ batch_normalization_53 (BatchNo (None, 26, 26, 256) 1024 conv2d_58[0][0] __________________________________________________________________________________________________ leaky_re_lu_53 (LeakyReLU) (None, 26, 26, 256) 0 batch_normalization_53[0][0] __________________________________________________________________________________________________ conv2d_59 (Conv2D) (None, 26, 26, 512) 1180160 leaky_re_lu_53[0][0] __________________________________________________________________________________________________ batch_normalization_54 (BatchNo (None, 26, 26, 512) 2048 conv2d_59[0][0] __________________________________________________________________________________________________ leaky_re_lu_54 (LeakyReLU) (None, 26, 26, 512) 0 batch_normalization_54[0][0] __________________________________________________________________________________________________ conv2d_60 (Conv2D) (None, 26, 26, 256) 131328 leaky_re_lu_54[0][0] __________________________________________________________________________________________________ batch_normalization_55 (BatchNo (None, 26, 26, 256) 1024 conv2d_60[0][0] __________________________________________________________________________________________________ leaky_re_lu_55 (LeakyReLU) (None, 26, 26, 256) 0 batch_normalization_55[0][0] __________________________________________________________________________________________________ conv2d_61 (Conv2D) (None, 26, 26, 512) 1180160 leaky_re_lu_55[0][0] __________________________________________________________________________________________________ batch_normalization_56 (BatchNo (None, 26, 26, 512) 2048 conv2d_61[0][0] __________________________________________________________________________________________________ leaky_re_lu_56 (LeakyReLU) (None, 26, 26, 512) 0 batch_normalization_56[0][0] __________________________________________________________________________________________________ conv2d_62 (Conv2D) (None, 26, 26, 256) 131328 leaky_re_lu_56[0][0] __________________________________________________________________________________________________ batch_normalization_57 (BatchNo (None, 26, 26, 256) 1024 conv2d_62[0][0] __________________________________________________________________________________________________ leaky_re_lu_57 (LeakyReLU) (None, 26, 26, 256) 0 batch_normalization_57[0][0] __________________________________________________________________________________________________ conv2d_63 (Conv2D) (None, 26, 26, 128) 32896 leaky_re_lu_57[0][0] __________________________________________________________________________________________________ batch_normalization_58 (BatchNo (None, 26, 26, 128) 512 conv2d_63[0][0] __________________________________________________________________________________________________ leaky_re_lu_58 (LeakyReLU) (None, 26, 26, 128) 0 batch_normalization_58[0][0] __________________________________________________________________________________________________ up_sampling2d_1 (UpSampling2D) (None, 52, 52, 128) 0 leaky_re_lu_58[0][0] __________________________________________________________________________________________________ concatenate_1 (Concatenate) (None, 52, 52, 384) 0 up_sampling2d_1[0][0] add_10[0][0] __________________________________________________________________________________________________ conv2d_64 (Conv2D) (None, 52, 52, 128) 49280 concatenate_1[0][0] __________________________________________________________________________________________________ batch_normalization_59 (BatchNo (None, 52, 52, 128) 512 conv2d_64[0][0] __________________________________________________________________________________________________ leaky_re_lu_59 (LeakyReLU) (None, 52, 52, 128) 0 batch_normalization_59[0][0] __________________________________________________________________________________________________ conv2d_65 (Conv2D) (None, 52, 52, 256) 295168 leaky_re_lu_59[0][0] __________________________________________________________________________________________________ batch_normalization_60 (BatchNo (None, 52, 52, 256) 1024 conv2d_65[0][0] __________________________________________________________________________________________________ leaky_re_lu_60 (LeakyReLU) (None, 52, 52, 256) 0 batch_normalization_60[0][0] __________________________________________________________________________________________________ conv2d_66 (Conv2D) (None, 52, 52, 128) 32896 leaky_re_lu_60[0][0] __________________________________________________________________________________________________ batch_normalization_61 (BatchNo (None, 52, 52, 128) 512 conv2d_66[0][0] __________________________________________________________________________________________________ leaky_re_lu_61 (LeakyReLU) (None, 52, 52, 128) 0 batch_normalization_61[0][0] __________________________________________________________________________________________________ conv2d_67 (Conv2D) (None, 52, 52, 256) 295168 leaky_re_lu_61[0][0] __________________________________________________________________________________________________ batch_normalization_62 (BatchNo (None, 52, 52, 256) 1024 conv2d_67[0][0] __________________________________________________________________________________________________ leaky_re_lu_62 (LeakyReLU) (None, 52, 52, 256) 0 batch_normalization_62[0][0] __________________________________________________________________________________________________ conv2d_68 (Conv2D) (None, 52, 52, 128) 32896 leaky_re_lu_62[0][0] __________________________________________________________________________________________________ batch_normalization_63 (BatchNo (None, 52, 52, 128) 512 conv2d_68[0][0] __________________________________________________________________________________________________ leaky_re_lu_63 (LeakyReLU) (None, 52, 52, 128) 0 batch_normalization_63[0][0] __________________________________________________________________________________________________ conv2d_69 (Conv2D) (None, 13, 13, 1024) 9438208 add_22[0][0] __________________________________________________________________________________________________ conv2d_71 (Conv2D) (None, 26, 26, 512) 1180160 leaky_re_lu_57[0][0] __________________________________________________________________________________________________ conv2d_73 (Conv2D) (None, 52, 52, 256) 295168 leaky_re_lu_63[0][0] __________________________________________________________________________________________________ batch_normalization_64 (BatchNo (None, 13, 13, 1024) 4096 conv2d_69[0][0] __________________________________________________________________________________________________ batch_normalization_66 (BatchNo (None, 26, 26, 512) 2048 conv2d_71[0][0] __________________________________________________________________________________________________ batch_normalization_68 (BatchNo (None, 52, 52, 256) 1024 conv2d_73[0][0] __________________________________________________________________________________________________ leaky_re_lu_64 (LeakyReLU) (None, 13, 13, 1024) 0 batch_normalization_64[0][0] __________________________________________________________________________________________________ leaky_re_lu_66 (LeakyReLU) (None, 26, 26, 512) 0 batch_normalization_66[0][0] __________________________________________________________________________________________________ leaky_re_lu_68 (LeakyReLU) (None, 52, 52, 256) 0 batch_normalization_68[0][0] __________________________________________________________________________________________________ conv2d_70 (Conv2D) (None, 13, 13, 75) 76875 leaky_re_lu_64[0][0] __________________________________________________________________________________________________ conv2d_72 (Conv2D) (None, 26, 26, 75) 38475 leaky_re_lu_66[0][0] __________________________________________________________________________________________________ conv2d_74 (Conv2D) (None, 52, 52, 75) 19275 leaky_re_lu_68[0][0] __________________________________________________________________________________________________ batch_normalization_65 (BatchNo (None, 13, 13, 75) 300 conv2d_70[0][0] __________________________________________________________________________________________________ batch_normalization_67 (BatchNo (None, 26, 26, 75) 300 conv2d_72[0][0] __________________________________________________________________________________________________ batch_normalization_69 (BatchNo (None, 52, 52, 75) 300 conv2d_74[0][0] __________________________________________________________________________________________________ leaky_re_lu_65 (LeakyReLU) (None, 13, 13, 75) 0 batch_normalization_65[0][0] __________________________________________________________________________________________________ leaky_re_lu_67 (LeakyReLU) (None, 26, 26, 75) 0 batch_normalization_67[0][0] __________________________________________________________________________________________________ leaky_re_lu_69 (LeakyReLU) (None, 52, 52, 75) 0 batch_normalization_69[0][0] Total params: 66,416,517 Trainable params: 66,367,427 Non-trainable params: 49,090 __________________________________________________________________________________________________加上输入层一共 243 层 六. 代码下载 示例代码可下载 Jupyter Notebook 示例代码 下一篇: 保姆级 Keras 实现 YOLO v3 二
http://www.zqtcl.cn/news/4342/

相关文章:

  • 百中搜如何做网站排名做网站协调
  • 网站维护提示页面模板馆陶县网站
  • 做个人网站怎么做我用织梦5.7做个网站应该把淘宝客店铺链接放到哪
  • 网站建设 東道网络网站对域名
  • 律师用的网站模板网站项目开发
  • 时尚网站设计教程asp.net网站备份
  • 在线网站流量查询3d效果图教程网站
  • seo网站推广佛山网站建设 制作教程 pdf
  • 1m带宽做网站怎么样世界500强企业的标准是什么
  • 厦门中信网站简历设计网站
  • 惠州网站建设哪家强互联网营销模式有哪些
  • 做亚马逊网站费用吗网站建设推广 公司
  • 贺州网站制作怎么自己做免费网站
  • 无锡高端网站建设网站制作怎样盈利
  • 网站做支付按流量付费吗广州单管核酸采样点
  • 肇东网站建设信息查询系统
  • 文化传媒主播公司 东莞网站建设公司注册后每年的费用
  • 淘宝网站开发的意义wordpress insert语句
  • 开发网站需要多少资金功能网站
  • 宁波市省网站建设海口文明网
  • 成都网站模板婚恋网站制作
  • 网站免费站如何做网络营销推广ppt
  • 网站做cdn怎么弄坪地网站建设信息
  • 怎么自己创建一个网站手机天津武清做网站
  • 建网站怎么年赚桂林市建设工程造价管理站网站
  • 南宁网站建设方案报价如何用快站做pc端网站
  • 网站系统修改wordpress海外建站
  • 网站开发投标书范本目录百度收录技巧
  • 中关村哪里可以做网站复试联系导师模板
  • 怎样开发一个网站seo是什么意思 部门