网站配色的原理和方法,自己做网站好还是购买网站好,微网站建设哪家便宜,网页广告怎么去除PyTorch 单机多卡训练示例 1、工具#xff1a;2、代码3、启动 1、工具#xff1a;
wandb#xff1a;云端保存训练记录#xff0c;可实时刷新logging#xff1a;记录训练日志argparse#xff1a;设置全局参数
2、代码
import os
import time
import torch
import wandb… PyTorch 单机多卡训练示例 1、工具2、代码3、启动 1、工具
wandb云端保存训练记录可实时刷新logging记录训练日志argparse设置全局参数
2、代码
import os
import time
import torch
import wandb
import argparse
import logging
from datetime import datetime
import torch.nn as nn
import torch.distributed as dist
from torch.utils.data import DataLoader, Dataset
import torch.optim.lr_scheduler as lr_scheduleros.environ[CUDA_VISIBLE_DEVICES] 0,1,2
os.environ[WANDB_MODE] runclass MLP(nn.Module):def __init__(self) - None:super().__init__()self.network nn.Sequential(nn.Linear(5, 64),nn.SiLU(),nn.Linear(64, 32),nn.SiLU(),nn.Linear(32, 5),)def forward(self, x):x self.network(x)return xclass RandomDataset(Dataset):def __init__(self, length):self.len lengthself.data torch.stack([torch.ones(5), torch.ones(5)*2,torch.ones(5)*3,torch.ones(5)*4,torch.ones(5)*5,torch.ones(5)*6,torch.ones(5)*7,torch.ones(5)*8,torch.ones(5)*9, torch.ones(5)*10,torch.ones(5)*11,torch.ones(5)*12,torch.ones(5)*13,torch.ones(5)*14,torch.ones(5)*15,torch.ones(5)*16]).to(cuda)self.label torch.stack([torch.zeros(5), torch.zeros(5)*2,torch.zeros(5)*3,torch.zeros(5)*4,torch.zeros(5)*5,torch.zeros(5)*6,torch.zeros(5)*7,torch.zeros(5)*8,torch.zeros(5)*9, torch.zeros(5)*10,torch.zeros(5)*11,torch.zeros(5)*12,torch.zeros(5)*13,torch.zeros(5)*14,torch.zeros(5)*15,torch.zeros(5)*16]).to(cuda)def __getitem__(self, index):return [self.data[index], self.label[index]]def __len__(self):return self.lendef collate_batch(self, batch):实现一个自定义的batch拼接函数这个函数将会被传递给DataLoader的collate_fn参数data torch.stack([x[0] for x in batch])label torch.stack([x[1] for x in batch])return [data, label]def create_logger(log_fileNone, rank0, log_levellogging.INFO):print(rank: , rank)logger logging.getLogger(__name__)logger.setLevel(log_level if rank 0 else ERROR) # 只有当rank0时才会输出info信息formatter logging.Formatter(%(asctime)s %(levelname)5s %(message)s)console logging.StreamHandler()console.setLevel(log_level if rank 0 else ERROR)console.setFormatter(formatter)logger.addHandler(console)if log_file is not None:file_handler logging.FileHandler(filenamelog_file)file_handler.setLevel(log_level if rank 0 else ERROR)file_handler.setFormatter(formatter)logger.addHandler(file_handler)logger.propagate Falsereturn loggerdef parse_config():parser argparse.ArgumentParser(descriptionarg parser)parser.add_argument(--batch_size, typeint, default2, requiredFalse, helpbatch size for training)parser.add_argument(--train_epochs, typeint, default100, requiredFalse, helpnumber of epochs to train for)parser.add_argument(--train_lr, typeint, default1e-3, requiredFalse, helptraining learning rate)parser.add_argument(--loader_num_workers, typeint, default0, helpnumber of workers for dataloader)parser.add_argument(--training, typebool, defaultTrue, helptraining or testing mode)parser.add_argument(--without_sync_bn, typebool, defaultFalse, helpwhether to use Synchronization Batch Normaliation)parser.add_argument(--output_dir, typebool, default/home/, helpoutput directory for saving model and logs)args parser.parse_args()return argsdef main():args parse_config()device torch.device(cuda) if torch.cuda.is_available() else torch.device(cpu)# 初始化分布式参数num_gpus torch.cuda.device_count()local_rank int(os.environ[LOCAL_RANK]) # 每个卡上运行一个程序(系统自动分配local_rank)# local_rank 0 # 在第一张卡运行多个程序torch.cuda.set_device(local_rank % num_gpus) # 设置当前卡的device# 初始化分布式dist.init_process_group(backendnccl, # 指定后端通讯方式为nccl# init_methodtcp://localhost:23456,ranklocal_rank, # rank是指当前进程的编号world_sizenum_gpus # worla_size是指总共的进程数)rank dist.get_rank()world_size dist.get_world_size()os.makedirs(args.output_dir, exist_okTrue)# 配置日志logger_file /home/caihuaiguang/wjl/Waymo/test-project/log.txtlogger create_logger(log_filelogger_file, rankrank)logger.info(rank: %d, world_size: %d % (rank, world_size))logger.info(local_rank: %d, num_gpus: %d % (local_rank, num_gpus))wandb_logger logging.getLogger(wandb)wandb_logger.setLevel(logging.WARNING)wandb_config wandb.init(projecttest-project, namestr(datetime.now().strftime(%Y.%m.%d-%H.%M.%S))frank-{rank},dirargs.output_dir,)# 加载并切分数据集dataset RandomDataset(16)if args.training:sampler torch.utils.data.distributed.DistributedSampler(dataset)else:sampler torch.utils.data.distributed.DistributedSampler(dataset, world_size, rank, shuffleFalse)data_loader DataLoader(dataset, batch_sizeargs.batch_size, samplersampler,collate_fndataset.collate_batch, num_workersargs.loader_num_workers)# 加载模型model MLP().to(device)# 统计模型参数量total_params sum(p.numel() for p in model.parameters() if p.requires_grad)logger.info(fTotal number of parameters: {total_params})model nn.parallel.DistributedDataParallel(model, device_ids[rank % torch.cuda.device_count()])if not args.without_sync_bn: # 不同卡之间进行同步批量正则化model torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)model.train()# 定义优化器optimizer torch.optim.AdamW(model.parameters(), lrargs.train_lr, weight_decay0)# 定义学习率调度器milestones [10, 30, 70] # 在这些 epoch 后降低学习率gamma 0.5 # 学习率降低的乘数因子scheduler lr_scheduler.MultiStepLR(optimizer, milestonesmilestones, gammagamma)# 训练模型for iter in range(args.train_epochs):sampler.set_epoch(iter)logger.info(-------------epoch %d start---------------- % iter)for _, batch in enumerate(data_loader):data, label batch[0], batch[1]datadata.to(device)labellabel.to(device)output model(data)loss (label - output).pow(2).sum()optimizer.zero_grad()loss.backward()logger.info(loss: %s % str(loss))wandb_config.log({loss: loss})optimizer.step()scheduler.step()logger.info(-------------epoch %d end---------------- % iter)time.sleep(10)if __name__ __main__:main()
3、启动
启动训练代码在终端输入
python -m torch.distributed.run --nproc_per_node3 test.py其中参数nproc_per_node3表示使用3张 GPU 进行训练。