当前位置: 首页 > news >正文

遂宁建设局网站首页怎样制作表白网站

遂宁建设局网站首页,怎样制作表白网站,企业网站实施方案,网站设计风格分析v10出了就想看看它的loss设计有什么不同#xff0c;看下来由于v8和v10的loss部分基本一致就放一起了。 v10的论文笔记#xff0c;还没看的可以看看#xff0c;初步尝试耗时确实有提升 好记性不如烂笔头#xff0c;还是得记录一下#xff0c;以免忘了#xff0c;废话结束…v10出了就想看看它的loss设计有什么不同看下来由于v8和v10的loss部分基本一致就放一起了。 v10的论文笔记还没看的可以看看初步尝试耗时确实有提升 好记性不如烂笔头还是得记录一下以免忘了废话结束 代码地址GitHub - THU-MIG/yolov10: YOLOv10: Real-Time End-to-End Object Detection 论文地址https://arxiv.org/pdf/2405.14458 YOLOv10/8从Anchor-Based(box anchor)换成了Anchor-Free(point anchor)检测头也换成了Decoupled Head这一结构具有提高收敛速度的好处在box anchor 方案中试过精度也有提升但耗时增加了一些但另一方面讲也会遇到分类与回归不对齐的问题。在一些网络中会通过将feature map中的cellpoint anchor中心点所编码的box与ground truth进行IOU计算以分配预测所用cell但用来分类和回归的最佳cell通常不一致。为了解决这一问题引入了TAL(Task Alignment Learning)来负责正负样本分配使得分类和回归任务之间具有较高的对齐一致性。 yolov10/v8中的loss主要分为2部分3个loss 一、回归分支的损失函数 1、DFL(Distribution Focal Loss)计算anchor point的中心点到左上角和右下角的偏移量 2、IoU Loss定位损失采用CIoU loss只计算正样本的定位损失 二、分类损失 1、分类损失采用BCE loss只计算正样本的分类损失。 v8DetectionLoss v8和v10的loss最大的不同在于v10有两个解耦头一个计算one2one head一个计算one2many head但是两个head的loss函数一样就是超参数有一些不同 class v10DetectLoss:def __init__(self, model):self.one2many v8DetectionLoss(model, tal_topk10)self.one2one v8DetectionLoss(model, tal_topk1)def __call__(self, preds, batch):one2many preds[one2many]loss_one2many self.one2many(one2many, batch)one2one preds[one2one]loss_one2one self.one2one(one2one, batch)return loss_one2many[0] loss_one2one[0], torch.cat((loss_one2many[1], loss_one2one[1])) one2many的topk为10one2one的topk为1。这部分代码和我写辅助监督的方式一样 class v8DetectionLoss:Criterion class for computing training losses.def __init__(self, model, tal_topk10): # model must be de-paralleledInitializes v8DetectionLoss with the model, defining model-related properties and BCE loss function.device next(model.parameters()).device # get model deviceh model.args # hyperparametersm model.model[-1] # Detect() moduleself.bce nn.BCEWithLogitsLoss(reductionnone)self.hyp hself.stride m.stride # model stridesself.nc m.nc # number of classesself.no m.noself.reg_max m.reg_maxself.device deviceself.use_dfl m.reg_max 1self.assigner TaskAlignedAssigner(topktal_topk, num_classesself.nc, alpha0.5, beta6.0)self.bbox_loss BboxLoss(m.reg_max - 1, use_dflself.use_dfl).to(device)self.proj torch.arange(m.reg_max, dtypetorch.float, devicedevice)def preprocess(self, targets, batch_size, scale_tensor):Preprocesses the target counts and matches with the input batch size to output a tensor.if targets.shape[0] 0:out torch.zeros(batch_size, 0, 5, deviceself.device)else:i targets[:, 0] # image index_, counts i.unique(return_countsTrue)counts counts.to(dtypetorch.int32)out torch.zeros(batch_size, counts.max(), 5, deviceself.device)for j in range(batch_size):matches i jn matches.sum()if n:out[j, :n] targets[matches, 1:]out[..., 1:5] xywh2xyxy(out[..., 1:5].mul_(scale_tensor))return outdef bbox_decode(self, anchor_points, pred_dist):Decode predicted object bounding box coordinates from anchor points and distribution.if self.use_dfl:b, a, c pred_dist.shape # batch, anchors, channelspred_dist pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))# pred_dist pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))# pred_dist (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)return dist2bbox(pred_dist, anchor_points, xywhFalse)def __call__(self, preds, batch):Calculate the sum of the loss for box, cls and dfl multiplied by batch size.loss torch.zeros(3, deviceself.device) # box, cls, dflfeats preds[1] if isinstance(preds, tuple) else predspred_distri, pred_scores torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split((self.reg_max * 4, self.nc), 1)pred_scores pred_scores.permute(0, 2, 1).contiguous()pred_distri pred_distri.permute(0, 2, 1).contiguous()dtype pred_scores.dtypebatch_size pred_scores.shape[0]imgsz torch.tensor(feats[0].shape[2:], deviceself.device, dtypedtype) * self.stride[0] # image size (h,w)anchor_points, stride_tensor make_anchors(feats, self.stride, 0.5)# Targetstargets torch.cat((batch[batch_idx].view(-1, 1), batch[cls].view(-1, 1), batch[bboxes]), 1)targets self.preprocess(targets.to(self.device), batch_size, scale_tensorimgsz[[1, 0, 1, 0]])gt_labels, gt_bboxes targets.split((1, 4), 2) # cls, xyxymask_gt gt_bboxes.sum(2, keepdimTrue).gt_(0)# Pboxespred_bboxes self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)_, target_bboxes, target_scores, fg_mask, _ self.assigner(pred_scores.detach().sigmoid(),(pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),anchor_points * stride_tensor,gt_labels,gt_bboxes,mask_gt,)target_scores_sum max(target_scores.sum(), 1)# Cls loss# loss[1] self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL wayloss[1] self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE# Bbox lossif fg_mask.sum():target_bboxes / stride_tensorloss[0], loss[2] self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask)loss[0] * self.hyp.box # box gainloss[1] * self.hyp.cls # cls gainloss[2] * self.hyp.dfl # dfl gainreturn loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl) v8DetectionLoss中preprocess 该函数主要是用来处理gt将同一batch中不同长度的gtcls boxes做对齐短的gt用全0补齐。假设一个batch为2其中image1的gt是[4,5]image2的gt是[7,5]那么取该batch中最长的7创建一个batch为2的张量[2,7,5]batch1的前四维为gt信息为全0。下面用一组实际数据为例 对应的gt_labelsgt_bboxesmask_gt之后会提到 v8DetectionLoss中bbox_decode 该函数主要是将每一个anchor point和预测的回归参数通过dist2bbox做解码生成anchor box与gt计算iou def dist2bbox(distance, anchor_points, xywhTrue, dim-1):Transform distance(ltrb) to box(xywh or xyxy).assert(distance.shape[dim] 4)lt, rb distance.split([2, 2], dim)x1y1 anchor_points - ltx2y2 anchor_points rbif xywh:c_xy (x1y1 x2y2) / 2wh x2y2 - x1y1return torch.cat((c_xy, wh), dim) # xywh bboxreturn torch.cat((x1y1, x2y2), dim) # xyxy bbox loss[1] bce loss对应类别损失 loss[1] self.bce(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCEloss[0] 对应iou loss loss[2] 对应dfl loss loss[0], loss[2] self.bbox_loss(pred_distri, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask) bbox loss的实现如下 class BboxLoss(nn.Module):Criterion class for computing training losses during training.def __init__(self, reg_max, use_dflFalse):Initialize the BboxLoss module with regularization maximum and DFL settings.super().__init__()self.reg_max reg_maxself.use_dfl use_dfldef forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):IoU loss.weight target_scores.sum(-1)[fg_mask].unsqueeze(-1)iou bbox_iou(pred_bboxes[fg_mask], target_bboxes[fg_mask], xywhFalse, CIoUTrue)loss_iou ((1.0 - iou) * weight).sum() / target_scores_sum# DFL lossif self.use_dfl:target_ltrb bbox2dist(anchor_points, target_bboxes, self.reg_max)loss_dfl self._df_loss(pred_dist[fg_mask].view(-1, self.reg_max 1), target_ltrb[fg_mask]) * weightloss_dfl loss_dfl.sum() / target_scores_sumelse:loss_dfl torch.tensor(0.0).to(pred_dist.device)return loss_iou, loss_dflstaticmethoddef _df_loss(pred_dist, target):Return sum of left and right DFL losses.Distribution Focal Loss (DFL) proposed in Generalized Focal Losshttps://ieeexplore.ieee.org/document/9792391tl target.long() # target lefttr tl 1 # target rightwl tr - target # weight leftwr 1 - wl # weight rightreturn (F.cross_entropy(pred_dist, tl.view(-1), reductionnone).view(tl.shape) * wl F.cross_entropy(pred_dist, tr.view(-1), reductionnone).view(tl.shape) * wr).mean(-1, keepdimTrue) TaskAlignedAssigner 这个我认为是整个loss设计中的重头戏 因为整个loss中不像anchor base算法中需要计算前背景的obj loss所以在TaskAlignedAssigner中需要确定哪些anchor属于前景哪些anchor属于背景所以TaskAlignedAssigner得到target_labels, target_bboxes, target_scores的同时还需要得到前景的mask--fg_mask.bool() class TaskAlignedAssigner(nn.Module):A task-aligned assigner for object detection.This class assigns ground-truth (gt) objects to anchors based on the task-aligned metric, which combines bothclassification and localization information.Attributes:topk (int): The number of top candidates to consider.num_classes (int): The number of object classes.alpha (float): The alpha parameter for the classification component of the task-aligned metric.beta (float): The beta parameter for the localization component of the task-aligned metric.eps (float): A small value to prevent division by zero.def __init__(self, topk13, num_classes80, alpha1.0, beta6.0, eps1e-9):Initialize a TaskAlignedAssigner object with customizable hyperparameters.super().__init__()self.topk topkself.num_classes num_classesself.bg_idx num_classesself.alpha alphaself.beta betaself.eps epstorch.no_grad()def forward(self, pd_scores, pd_bboxes, anc_points, gt_labels, gt_bboxes, mask_gt):Compute the task-aligned assignment. Reference code is available athttps://github.com/Nioolek/PPYOLOE_pytorch/blob/master/ppyoloe/assigner/tal_assigner.py.Args:pd_scores (Tensor): shape(bs, num_total_anchors, num_classes)pd_bboxes (Tensor): shape(bs, num_total_anchors, 4)anc_points (Tensor): shape(num_total_anchors, 2)gt_labels (Tensor): shape(bs, n_max_boxes, 1)gt_bboxes (Tensor): shape(bs, n_max_boxes, 4)mask_gt (Tensor): shape(bs, n_max_boxes, 1)Returns:target_labels (Tensor): shape(bs, num_total_anchors)target_bboxes (Tensor): shape(bs, num_total_anchors, 4)target_scores (Tensor): shape(bs, num_total_anchors, num_classes)fg_mask (Tensor): shape(bs, num_total_anchors)target_gt_idx (Tensor): shape(bs, num_total_anchors)self.bs pd_scores.shape[0]self.n_max_boxes gt_bboxes.shape[1]if self.n_max_boxes 0:device gt_bboxes.devicereturn (torch.full_like(pd_scores[..., 0], self.bg_idx).to(device),torch.zeros_like(pd_bboxes).to(device),torch.zeros_like(pd_scores).to(device),torch.zeros_like(pd_scores[..., 0]).to(device),torch.zeros_like(pd_scores[..., 0]).to(device),)mask_pos, align_metric, overlaps self.get_pos_mask(pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt)target_gt_idx, fg_mask, mask_pos self.select_highest_overlaps(mask_pos, overlaps, self.n_max_boxes)# Assigned targettarget_labels, target_bboxes, target_scores self.get_targets(gt_labels, gt_bboxes, target_gt_idx, fg_mask)# Normalizealign_metric * mask_pospos_align_metrics align_metric.amax(dim-1, keepdimTrue) # b, max_num_objpos_overlaps (overlaps * mask_pos).amax(dim-1, keepdimTrue) # b, max_num_objnorm_align_metric (align_metric * pos_overlaps / (pos_align_metrics self.eps)).amax(-2).unsqueeze(-1)target_scores target_scores * norm_align_metricreturn target_labels, target_bboxes, target_scores, fg_mask.bool(), target_gt_idxget_pos_mask def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt):Get in_gts mask, (b, max_num_obj, h*w).mask_in_gts self.select_candidates_in_gts(anc_points, gt_bboxes) # 表示anchor中心是否位于对应的ground truth bounding box内# Get anchor_align metric, (b, max_num_obj, h*w)align_metric, overlaps self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_in_gts * mask_gt)# Get topk_metric mask, (b, max_num_obj, h*w)mask_topk self.select_topk_candidates(align_metric, topk_maskmask_gt.expand(-1, -1, self.topk).bool())# Merge all mask to a final mask, (b, max_num_obj, h*w)mask_pos mask_topk * mask_in_gts * mask_gt # 一个anchor point 负责一个gt object的预测return mask_pos, align_metric, overlaps 其中包含select_candidates_in_gtsget_box_metricsselect_topk_candidates由这三个函数共同选择正样本anchor point的位置 def select_candidates_in_gts(xy_centers, gt_bboxes, eps1e-9):Select the positive anchor center in gt.Args:xy_centers (Tensor): shape(h*w, 2)gt_bboxes (Tensor): shape(b, n_boxes, 4)Returns:(Tensor): shape(b, n_boxes, h*w)n_anchors xy_centers.shape[0] # 表示anchor中心的数量bs, n_boxes, _ gt_bboxes.shapelt, rb gt_bboxes.view(-1, 1, 4).chunk(2, 2) # left-top, right-bottom# 通过计算每个anchor中心与每个gt_bboxes的左上角和右下角之间的差值以及右下角和左上角之间的差值并将结果拼接为形状为 (bs, n_boxes, n_anchors, -1) 的张量。bbox_deltas torch.cat((xy_centers[None] - lt, rb - xy_centers[None]), dim2).view(bs, n_boxes, n_anchors, -1) # return (bbox_deltas.min(3)[0] eps).to(gt_bboxes.dtype)# 计算 bbox_deltas 张量沿着第3个维度的最小值形状为 (b, n_boxes, h*w) 的布尔型张量表示anchor中心是否位于对应的ground truth bounding box内(最小值都为正数)return bbox_deltas.amin(3).gt_(eps) 实现思想很简单就是将anchor point的坐标与gt box的左上角坐标相减得到一个差值同时gt box右下角的坐标与anchor point的坐标相减同样得到一个差值如果anchor point位于gt box内那么这两组差值的数值都应该是大于0的数。 select_candidates_in_gts用于初步筛选位于gt box中的anchor points 如上图假设绿色的为gt box红色的anchor points就是通过 select_candidates_in_gts筛选出来用于预测该gt box表示的object的可能的anchor point最后返回的是关于这些anchor point的位置mask get_box_metrics 它具有如下参数 pd_scores就是分类head输出的结果shape一般为[bs, 8400, 80](以coco数据集输入640*640为例) pd_bboxes回归head输出的结果shape一般为[bs, 8400, 4] gt_labelsgt_bboxesmask_gt为gt所包含的信息由于gt有做过数据用0补齐mask_gt表示实际上非零的数据 mask_in_gts * mask_gt表示实际上有gt标签位置上的候选anchor的位置的mask def get_box_metrics(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, mask_gt):Compute alignment metric given predicted and ground truth bounding boxes.na pd_bboxes.shape[-2]mask_gt mask_gt.bool() # b, max_num_obj, h*woverlaps torch.zeros([self.bs, self.n_max_boxes, na], dtypepd_bboxes.dtype, devicepd_bboxes.device) # 存储ioubbox_scores torch.zeros([self.bs, self.n_max_boxes, na], dtypepd_scores.dtype, devicepd_scores.device) # 存储边界框的分数ind torch.zeros([2, self.bs, self.n_max_boxes], dtypetorch.long) # torch.Size([2, 2, 7]) * 0 # 2, b, max_num_objind[0] torch.arange(endself.bs).view(-1, 1).expand(-1, self.n_max_boxes) # b, max_num_obj # 批次信息 为从0到 self.bs-1 的序列将其展开为形状为 (self.bs, self.n_max_boxes)ind[1] gt_labels.squeeze(-1) # b, max_num_obj # 类别信息 为 gt_labels 的挤压操作squeeze(-1)将其形状变为 (self.bs, self.n_max_boxes)# Get the scores of each grid for each gt clsbbox_scores[mask_gt] pd_scores[ind[0], :, ind[1]][mask_gt] # b, max_num_obj, h*w 根据实际边界框的掩码来获取每个网格单元的预测分数并存储在 bbox_scores 中# (b, max_num_obj, 1, 4), (b, 1, h*w, 4)pd_boxes pd_bboxes.unsqueeze(1).expand(-1, self.n_max_boxes, -1, -1)[mask_gt]gt_boxes gt_bboxes.unsqueeze(2).expand(-1, -1, na, -1)[mask_gt]overlaps[mask_gt] self.iou_calculation(gt_boxes, pd_boxes)# 对于满足实际边界框掩码的每个位置从 pd_bboxes 中获取预测边界框pd_boxes和实际边界框gt_boxes计算iou并将结果存储在 overlaps 中align_metric bbox_scores.pow(self.alpha) * overlaps.pow(self.beta) # align_metric bbox_scores^alpha * overlaps^beta 计算对齐度量其中 alpha 和 beta 是超参数return align_metric, overlaps 通过iou计算预测框解码后的与gt box之间的iou得到overlap由于每个anchor point都有80个类别的预测得分通过该处gt box对应的类别标签得到预测得分得到bbox_scores通过align_metric bbox_scores^alpha * overlaps^beta 计算对齐度量。该度量同时考虑得分和框的重叠度。 select_topk_candidates 就是通过get_box_metrics中得到的align_metric来确定所有与gt有重叠的anchor中align_metric最高的前十或前一 def select_topk_candidates(self, metrics, largestTrue, topk_maskNone):Select the top-k candidates based on the given metrics.Args:metrics (Tensor): A tensor of shape (b, max_num_obj, h*w), where b is the batch size,max_num_obj is the maximum number of objects, and h*w represents thetotal number of anchor points.largest (bool): If True, select the largest values; otherwise, select the smallest values.topk_mask (Tensor): An optional boolean tensor of shape (b, max_num_obj, topk), wheretopk is the number of top candidates to consider. If not provided,the top-k values are automatically computed based on the given metrics.Returns:(Tensor): A tensor of shape (b, max_num_obj, h*w) containing the selected top-k candidates.# (b, max_num_obj, topk)# 使用 torch.topk 函数在给定的度量指标张量 metrics 的最后一个维度上选择前 k 个最大。# 这将返回两个张量topk_metrics (形状为 (b, max_num_obj, topk)) 包含了选定的度量指标以及 topk_idxs (形状为 (b, max_num_obj, topk)) 包含了相应的索引topk_metrics, topk_idxs torch.topk(metrics, self.topk, dim-1, largestlargest)if topk_mask is None:topk_mask (topk_metrics.max(-1, keepdimTrue)[0] self.eps).expand_as(topk_idxs)# (b, max_num_obj, topk)topk_idxs.masked_fill_(~topk_mask, 0) # 使用 topk_mask 将 topk_idxs 张量中未选中的索引位置~topk_mask用零进行填充# (b, max_num_obj, topk, h*w) - (b, max_num_obj, h*w)count_tensor torch.zeros(metrics.shape, dtypetorch.int8, devicetopk_idxs.device)ones torch.ones_like(topk_idxs[:, :, :1], dtypetorch.int8, devicetopk_idxs.device)for k in range(self.topk):# Expand topk_idxs for each value of k and add 1 at the specified positionscount_tensor.scatter_add_(-1, topk_idxs[:, :, k : k 1], ones) # 使用 scatter_add_ 函数根据索引 topk_idxs[:, :, k : k 1]将 ones 张量的值相加到 count_tensor 张量的相应位置上# count_tensor.scatter_add_(-1, topk_idxs, torch.ones_like(topk_idxs, dtypetorch.int8, devicetopk_idxs.device))# Filter invalid bboxescount_tensor.masked_fill_(count_tensor 1, 0) # 将 count_tensor 中大于 1 的值用零进行填充以过滤掉超过一个的边界框return count_tensor.to(metrics.dtype) 比如上图由于这里只是作为示例只表示其中一个特征图上gt样例其他层的gt位置可能有更多的anchor point满足 align_metric的条件被保留下来不必太纠结这里是不是有10个因为PAN输出了三层特征图anchor对应每层特征图的中心而实践中将每层的anchor展平之后合并在一起得到8400的长度而最终是在这8400中取前十的anchor所以每层特征图上保留的anchor可能数量不等。 此时被保留下来的anchor point的位置用1表示其余位置为0仅保留了指标前十的样本作为正样本 select_highest_overlaps def select_highest_overlaps(mask_pos, overlaps, n_max_boxes):If an anchor box is assigned to multiple gts, the one with the highest IoU will be selected.Args:mask_pos (Tensor): shape(b, n_max_boxes, h*w)overlaps (Tensor): shape(b, n_max_boxes, h*w)Returns:target_gt_idx (Tensor): shape(b, h*w)fg_mask (Tensor): shape(b, h*w)mask_pos (Tensor): shape(b, n_max_boxes, h*w)# (b, n_max_boxes, h*w) - (b, h*w)fg_mask mask_pos.sum(-2) # 对 mask_pos 沿着倒数第二个维度求和得到形状为 (b, h*w) 的张量 fg_mask表示每个网格单元上非背景anchor box的数量if fg_mask.max() 1: # one anchor is assigned to multiple gt_bboxes# 创建一个布尔型张量 mask_multi_gts形状为 (b, n_max_boxes, h*w)用于指示哪些网格单元拥有多个ground truth bounding boxesmask_multi_gts (fg_mask.unsqueeze(1) 1).expand(-1, n_max_boxes, -1) # (b, n_max_boxes, h*w)# 获取每个网格单元上具有最高IoU的ground truth bounding box的索引并创建一个张量 is_max_overlaps形状与 mask_pos 相同# 其中最高IoU的ground truth bounding box对应的位置上为1其余位置为0。max_overlaps_idx overlaps.argmax(1) # (b, h*w)is_max_overlaps torch.zeros(mask_pos.shape, dtypemask_pos.dtype, devicemask_pos.device)is_max_overlaps.scatter_(1, max_overlaps_idx.unsqueeze(1), 1) # max_overlaps_idx表示具有最大iou的索引将具有最大iou的位置设置为1# 根据 mask_multi_gts 来更新 mask_pos。对于存在多个ground truth bounding box的网格单元将 is_max_overlaps 中# 对应位置的值赋给 mask_pos以保留具有最高IoU的ground truth bounding box的匹配情况mask_pos torch.where(mask_multi_gts, is_max_overlaps, mask_pos).float() # (b, n_max_boxes, h*w)fg_mask mask_pos.sum(-2)# Find each grid serve which gt(index)target_gt_idx mask_pos.argmax(-2) # (b, h*w) # 得到每个网格单元上具有最高IoU的ground truth bounding box的索引 target_gt_idxreturn target_gt_idx, fg_mask, mask_pos 对被分配了多个gt的anchor去重得到前景的mask以及anchor point上具有最高IoU的ground truth bounding box的索引。假设上图中红色的anchor被分配给了两个gt通select_highest_overlaps后会保留gt与该anchor的iou最大的那个并用该anchor来预测该gt另一个gt则可能会被周围的其他anchor所负责。此时也要更新mask_pos毕竟重新对anchor做了处理。 因为每个anchor负责一个类别的检测mask_pos表示最终确定的anchor的mask如下图所示为其中一个batch中数据形式 该batch中824082418242为最终确定的anchor其在红色箭头所示维度上对应的索引为2target_gt_idx在该batch上的最终表示为 get_targets 有了以上的信息之后就获取gt了 def get_targets(self, gt_labels, gt_bboxes, target_gt_idx, fg_mask):Compute target labels, target bounding boxes, and target scores for the positive anchor points.Args:gt_labels (Tensor): Ground truth labels of shape (b, max_num_obj, 1), where b is thebatch size and max_num_obj is the maximum number of objects.gt_bboxes (Tensor): Ground truth bounding boxes of shape (b, max_num_obj, 4).target_gt_idx (Tensor): Indices of the assigned ground truth objects for positiveanchor points, with shape (b, h*w), where h*w is the totalnumber of anchor points.fg_mask (Tensor): A boolean tensor of shape (b, h*w) indicating the positive(foreground) anchor points.Returns:(Tuple[Tensor, Tensor, Tensor]): A tuple containing the following tensors:- target_labels (Tensor): Shape (b, h*w), containing the target labels forpositive anchor points.- target_bboxes (Tensor): Shape (b, h*w, 4), containing the target bounding boxesfor positive anchor points.- target_scores (Tensor): Shape (b, h*w, num_classes), containing the target scoresfor positive anchor points, where num_classes is the numberof object classes.# Assigned target labels, (b, 1)batch_ind torch.arange(endself.bs, dtypetorch.int64, devicegt_labels.device)[..., None]# 使用 target_gt_idx 加上偏移量得到形状为 (b, h*w) 的 target_gt_idx 张量表示正样本anchor point的真实类别索引target_gt_idx target_gt_idx batch_ind * self.n_max_boxes # (b, h*w)# 使用 flatten 函数将 gt_labels 张量展平为形状为 (b * max_num_obj) 的张量然后使用 target_gt_idx 进行索引# 得到形状为 (b, h*w) 的 target_labels 张量表示正样本anchor point的目标标签target_labels gt_labels.long().flatten()[target_gt_idx] # (b, h*w)# Assigned target boxes, (b, max_num_obj, 4) - (b, h*w, 4)target_bboxes gt_bboxes.view(-1, gt_bboxes.shape[-1])[target_gt_idx] # 表示正样本anchor point的目标边界框# Assigned target scorestarget_labels.clamp_(0)# 10x faster than F.one_hot()target_scores torch.zeros((target_labels.shape[0], target_labels.shape[1], self.num_classes),dtypetorch.int64,devicetarget_labels.device,) # (b, h*w, 80)target_scores.scatter_(2, target_labels.unsqueeze(-1), 1) # 使用 scatter_ 函数将 target_labels 的值进行 one-hot 编码将张量中每个位置上的目标类别置为 1fg_scores_mask fg_mask[:, :, None].repeat(1, 1, self.num_classes) # (b, h*w, 80)target_scores torch.where(fg_scores_mask 0, target_scores, 0) # 根据 fg_scores_mask 的值将 target_scores 张量中的非正样本位置值小于等于 0即背景类置为零return target_labels, target_bboxes, target_scores 该函数的要点基本都在代码里注释了 得到target后还要对target_scores做一些归一化操作
http://www.zqtcl.cn/news/582769/

相关文章:

  • 网站建设数据录入创建网络公司
  • 行业网站建设报价摄影标志logo设计欣赏
  • 做reference的网站网站首页 模板
  • 微信php网站开发流程图做网站优化好的网络公司
  • 网站显示百度地图长沙制作网页的基本步骤
  • 免费做封面的网站哈尔滨网页制作要多少钱
  • html免费网页素材网站优化教程
  • 百度关键词网站排名优化软件seo服务 收费
  • 中英文切换网站网站建设的关键问题
  • 5款免费网站管理系统wordpress 本地
  • 企业网站制作公司盈利百度云搜索
  • 微云影视自助建站系统大理州建设局网站门户网
  • 构建网站需要会什么意思辽宁省朝阳网站建设
  • 网站建设捌金手指专业1公司域名邮箱注册
  • 建设工程协会网站建设工程合同属于专属管辖吗
  • 网站建设费可分摊几年电子商务网站建设基础
  • wordpress api 发贴北京网站优化seo
  • 青岛网站制作服务商wordpress红包
  • 网站响应式设计如何提高网站文章收录
  • 网站 橙色如何做自己网站的seo
  • 网上商城网站建设公司兰州网站制作公司怎么样
  • 网站的动态图怎么做的获取网站访客qq
  • 黑龙江网站建站建设知名品牌形象设计公司
  • 网站建设去哪可接单怎么做微信小程序平台
  • 做外贸重新设计网站兰州网站建设慕枫
  • 服装销售 网站建设论文搭建企业网站需要什么
  • cnnic网站备案html网站建设代码
  • 金华网站建设明细报价表c苏宁网站开发
  • 在手机上怎么做微电影网站湖南人工智能建站系统软件
  • 网站做的一样算侵权吗站群建站系统