当前位置: 首页 > news >正文

北流网站建设骏域网站建设专家

北流网站建设,骏域网站建设专家,优秀营销软文范例100字,凡科手机网站建设实践学习PaddleScience飞桨科学工具包 动手实践#xff0c;在实践中学习#xff01;本项目可以在AIStudio平台一键运行#xff01;地址#xff1a;https://aistudio.baidu.com/projectdetail/4278591 本项目第一次执行会报错#xff0c;再执行一次即可。若碰到莫名其妙的…实践学习PaddleScience飞桨科学工具包 动手实践在实践中学习本项目可以在AIStudio平台一键运行地址https://aistudio.baidu.com/projectdetail/4278591 本项目第一次执行会报错再执行一次即可。若碰到莫名其妙的报错换成32G显存环境试试。 要平视爱因斯坦和牛顿 爱因斯坦和牛顿也是普通人也有认识不到的地方不要盲目崇拜也不要一味否定前人的实践而要对前人的成果尊重客观事实辩证的一分为二的学习、实践和吸收要站在牛顿和爱因斯坦的肩膀上与他们平视。 --张永德原话记录有些许异同 AIStudio和飞桨科学工具包沟通理论和实践让我们与顶级科学家站在同一起跑线上 一、PaddleScience飞桨科学工具包简介 官网github地址https://github.com/PaddlePaddle/PaddleScience PaddleScience 使用可重用的软件组件扩展了 PaddlePaddle 框架用于开发新颖的科学计算应用程序。此类新应用包括基于物理的机器学习、基于神经网络的 PDE 求解器、CFD 机器学习等。PaddleScience 目前正在积极开发中。它的设计不断发展其 API 可能会发生变化。 1、核心组件 核心功能和组织 PaddleScience 目前专注于 PINNs 模型。核心组件如下。 Geometry几何学一个用于定义几何域的声明式接口。支持自动离散化 Neural net神经网络目前支持可自定义大小和深度的全连接层。 PDE偏微分方程以符号形式描绘偏微分方程。特定 PDE 派生基本 PDE 类。当前包括两个原生 PDELaplace2d 和 NavierStokes2d。 Loss损失定义在训练过程中执行的确切惩罚。默认情况下应用 L2 损失。在目前的设计中总损失是方程损失、边界条件损失和初始条件损失三部分的加权和。 Optimizer优化器指定用于训练的优化器。Adam 是默认选项。未来将提供更多优化器例如 BFGS。 Solver求解器以批处理方式管理给定训练数据的训练过程。 Visualization可视化可轻松访问图形绘制实用程序。 2、物理信息神经网络PINN简介 https://blog.csdn.net/jerry_liufeng/article/details/120727393 【PINN】基于物理信息的神经网络 Physics Informed Neural Network简称PINN 是一种科学机器在传统数值领域的应用方法特别是用于解决与偏微分方程 PDE 相关的各种问题包括方程求解、参数反演、模型发现、控制与优化等。 大多数物理规律都可以表述为偏微分方程(PDE)的形式。偏微分方程尤其是高阶偏微分方程难以求解析解通常是采用各种方式逼近从而获得近似解。而神经网络的强大之处就在于其是万能近似器(universal approximator PaddlePaddle的神经网络核心是自动微分其实一个AI框架主要就是完成两部分1、Tensor张量的存储与计算 2、自动微分。 飞桨的自动微分是通过trace的方式记录前向OP的执行并自动创建反向var和添加相应的反向OP然后来实现反向梯度计算的。 3、Vtk介绍 参见https://www.cnblogs.com/zhhfan/p/10312170.html Vtkvisualization toolkit是一个开源的免费软件系统主要用于三维计算机图形学、图像处理和可视化。Vtk是在面向对象原理的基础上设计和实现的它的内核是用C构建的包含有大约250,000行代码2000多个类还包含有几个转换界面因此也可以自由的通过JavaTcl/Tk和Python各种语言使用vtk。以下介绍VTK对于STL图像的基本操作 基础概念 数据源 resource: cone vtk.vtkConeSource()映射器 mapperconeMapper vtk.vtkPolyDataMapper()映射器添加数据源 coneMapper.SetInput( cone.GetOutput() )演员 actor: coneActor vtk.vtkActor()演员添加映射器coneActor.SetMapper( coneMapper )绘制器 renderer: vtk.vtkRenderer()绘制器添加演员renderer.AddActor( coneActor )绘制窗口 winvtk.vtkRenderWindow()绘制窗口添加绘制器renWin.AddRenderer( renderer )窗口读取绘制器生成的图形 renWin.Render() 如何打开vtp文件见“相关问题和技巧”部分。 二、飞桨科学工具包安装 若只需要执行例子里的.py文件则只要加上环境变量即可%env PYTHONPATH/home/aistudio/PaddleScience。见实践三部分。 若需要使用Notebook模式进行代码分块编写和执行则需要安装飞桨科学包本项目里采用手写setup.py安装文件的方式帮着飞桨科学工具包实现安装功能。见实践一和实践二部分。 1、 环境设置 本项目第一个例子以notebook模式展示因此需要安装飞桨科学包步骤会略显繁琐。 安装相关库文件 # 大约需要20秒 !pip install numpy scipy sympy matplotlib vtk pyevtk pandas wget visualdl下载飞桨科学工具包源码。 源码中有例子可以用来研究学习。 %cd ~/ # !pip install pip -U --user !git clone https://github.com/PaddlePaddle/PaddleScience # 下载代码 # 更新软件可不执行 # !cd ~/PaddleScience/ git pull写安装配置文件 因为原配置文件中包含的库较多在setup安装时会卡住所以单独写一个只有一个包的配置文件。 命令行运行这步可省略。 %%writefile ~/PaddleScience/requirements_setup.txt numpy写飞桨科学包setup.py安装文件 setup安装之后就可以不局限于执行路径了。 命令行运行这步可省略。 %%writefile ~/PaddleScience/setup.py import setuptools import subprocess import ostry:version (subprocess.check_output([git, describe, --abbrev0, --tags]).strip().decode(utf-8)) except Exception as e:print(Could not get version tag. Defaulting to version 0)version 0with open(requirements_setup.txt) as f:requirements f.read().splitlines()if __name__ __main__:with open(README.md, r) as fh:long_description fh.read()setuptools.setup(namepaddlescience,versionversion,authorPaddlePaddle,author_emailxxxxbaidu.com,descriptionpaddlescience,long_descriptionlong_description,long_description_content_typetext/markdown,url ,classifiers[Programming Language :: Python :: 3,Operating System :: POSIX :: Linux,License :: OSI Approved :: MIT License,],packagessetuptools.find_packages(include[paddlescience*], exclude[]),# package_data{torchmd: [config.ini, logging.ini],},install_requiresrequirements,) 2、使用setup安装PaddleScience 使用命令python setup.py install , 其中的setup.py文件就是我们前面写的那个文件。 也可以使用开发模式命令是python setup.py develop 命令行运行这步可省略。 !cd /home/aistudio/PaddleScience/ python setup.py install 验证 测试一下看飞桨科学工具包是否安装成功。第一次执行可能报错重启环境使setup生效再次运行即可。 没有error报错则证明安装成功 命令行运行这步可省略。 # 第一次执行可能报错重启环境使setup生效再次运行即可。 import paddlescience三、实践1、顶盖驱动型腔流 本指南介绍了如何构建 PINN 模型来模拟 PaddleScience 中的 2d Lid Driven Cavity (LDC) 流动。 1、介绍 LDC 问题模拟了一个充满液体的容器其中盖子以恒定速度沿水平方向移动。目标是计算系统处于稳态时容器中每个内部点的液体速度。 下图显示了训练 100 x 100 网格生成的结果。分别显示速度的垂直和水平分量。 2、如何构建PINN模型 PINN 模型由过去的传统 PDE 设置和近似解的神经网络共同组成。PDE 部分包括执行物理定律的特定微分方程、限定问题域的几何形状以及可以找到解决方案的初始和边界值条件。神经网络部分可以采用深度学习工具包中广泛存在的典型前馈网络的变体。 要获得 PINN 模型需要训练神经网络。正是在这个阶段PDE 的信息通过反向传播被灌输到神经网络中。损失函数在控制如何分配这些信息方面起着至关重要的作用强调 PDE 的不同方面例如通过调整方程残差和边界值的权重。 概念明确后接下来让我们看一下如何将其转换为 ldc2d 示例。 3、构造几何体psci.geometry 首先使用模块接口定义问题几何体。在此示例中几何体是一个矩形其原点位于坐标 (-0.05, -0.05)范围设置为 (0.05, 0.05)。 # %cd ~/PaddleScience/ import paddlescience as psci import numpy as npgeo psci.geometry.Rectangular(origin(-0.05, -0.05), extent(0.05, 0.05))接下来为几何图形添加边界这些边界将在 PDE 中使用。请注意该geo.add_boundary函数仅用于具有物理约束的边界。 geo.add_boundary(nametop, criterialambda x, y: abs(y - 0.05) 1e-5) geo.add_boundary(namedown, criterialambda x, y: abs(y 0.05) 1e-5) geo.add_boundary(nameleft, criterialambda x, y: abs(x 0.05) 1e-5) geo.add_boundary(nameright, criterialambda x, y: abs(x - 0.05) 1e-5) 准备好域后给出离散化方法。 npoints 10201 geo_disc geo.discretize(npointsnpoints, methoduniform) 4、构建偏微分方程 定义几何部分后定义要求解的 PDE 方程。在本例中方程是 2d Navier Stokes。这个方程存在于科学工具包中只需要创建一个psci.pde.NavierStokes对象来设置方程。 pde psci.pde.NavierStokes(nu0.01, rho1.0, dim2, time_dependentFalse, weight0.0001) 接下来为 PDE 添加边界方程。PDE 中的边界方程与几何中的边界定义密切相关。使用pde.add_bc设置边界上的物理信息. weight_top_u lambda x, y: 1.0 - 20.0 * abs(x) bc_top_u psci.bc.Dirichlet(u, rhs1.0, weightweight_top_u) bc_top_v psci.bc.Dirichlet(v, rhs0.0) bc_down_u psci.bc.Dirichlet(u, rhs0.0) bc_down_v psci.bc.Dirichlet(v, rhs0.0) bc_left_u psci.bc.Dirichlet(u, rhs0.0) bc_left_v psci.bc.Dirichlet(v, rhs0.0) bc_right_u psci.bc.Dirichlet(u, rhs0.0) bc_right_v psci.bc.Dirichlet(v, rhs0.0)pde.add_bc(top, bc_top_u, bc_top_v) pde.add_bc(down, bc_down_u, bc_down_v) pde.add_bc(left, bc_left_u, bc_left_v) pde.add_bc(right, bc_right_u, bc_right_v) 一旦准备好方程和问题域就应该给出离散化方法。此方法将用于在训练开始之前生成训练数据。目前可以将二维空间离散化为 N×M 网格在本例中具体为 101×101。 pde_disc pde.discretize(geo_discgeo_disc) 5、构建神经网络 现在 PDE 部分几乎完成了我们继续构建神经网络。通过创建psci.network.FCNet对象来定义完全连接的网络很简单。以下是我们如何创建一个由 10 个隐藏层组成的 FFN每个隐藏层有 20 个神经元使用双曲正切作为激活函数。 net psci.network.FCNet(num_ins2,num_outs3,num_layers10,hidden_size20,activationtanh) 接下来最重要的步骤之一是定义损失函数。这里我们使用 L2 损失。 loss psci.loss.L2(p2) 通过设计该loss对象传达了 PDE 的完整信息。现在结合神经网络和损失我们创建psci.algorithm.PINNs模型算法。 algo psci.algorithm.PINNs(netnet, lossloss) 接下来通过插入 Adam 优化器构建求解器就可以开始训练了。在此示例中使用了 Adam 优化器并给出了 0.001 的学习率。 该类将此处psci.solver.Solver调用的 PINNs 模型和优化器捆绑到公开接口 algo的求解器对象中。接受一个关键字参数指定每个批次的 epoch 数。 # 300epoch 用时40秒。30000估计用时4000秒约一小时7分钟 opt psci.optimizer.Adam(learning_rate0.001, parametersnet.parameters()) solver psci.solver.Solver(pdepde_disc, algoalgo, optopt) solution solver.solve(num_epoch3000) # 30000 最后solver.solve返回一个函数该函数计算几何中给定点的解值。将该函数应用于几何将输出转换为 Numpy然后您可以验证结果。 psci.visu.save_vtk是一个快速可视化的辅助工具。它将图形保存在 vtp 文件中可以使用Paraview播放。 psci.visu.save_vtk(geo_discpde_disc.geometry, datasolution) # psci.visu.save_vtk( # time_arraypde_disc.time_array, geo_discpde_disc.geometry, datasolution)##6、 这样顶盖驱动型腔流训练就完成了 期间碰到过从第435个开始None的问题新飞桨版本已解决该问题。 epoch/num_epoch: 434 / 30000 batch/num_batch: 1 / 1 loss: 66.1305 eq_loss: 66.13051 bc_loss: 8.132067 epoch/num_epoch: 435 / 30000 batch/num_batch: 1 / 1 loss: nan eq_loss: nan bc_loss: nan 四、实践2、多孔介质中的达西流 # %cd ~/PaddleScience import paddlescience as psci import numpy as np import paddle1、构造几何psci.geometry 首先使用模块接口定义问题几何。在此示例中几何图形是一个矩形其原点位于坐标 (0.0, 0.0)范围设置为 (1.0, 1.0)。 psci.config.set_dtype(float32)# ref solution ref_sol lambda x, y: np.sin(2.0 * np.pi * x) * np.cos(2.0 * np.pi * y)# ref rhs ref_rhs lambda x, y: 8.0 * np.pi**2 * np.sin(2.0 * np.pi * x) * np.cos(2.0 * np.pi * y)# set geometry and boundary geo psci.geometry.Rectangular(origin(0.0, 0.0), extent(1.0, 1.0))接下来为几何图形添加边界这些边界将在 PDE 中使用。请注意该geo.add_boundary函数仅用于具有物理约束的边界。 geo.add_boundary(nametop, criterialambda x, y: y 1.0) geo.add_boundary(namedown, criterialambda x, y: y 0.0) geo.add_boundary(nameleft, criterialambda x, y: x 0.0) geo.add_boundary(nameright, criterialambda x, y: x 1.0)准备好域后应给出离散化方法。 geo_disc geo.discretize(npointsnpoints, methoduniform)2、构建偏微分方程 定义几何部分后定义要求解的 PDE 方程。在本例中方程是 2d Poisson。这个方程存在于包中只需要创建一个psci.pde.Poisson对象来设置方程。 pde psci.pde.Poisson(dim2, rhsref_rhs)接下来为 PDE 添加边界方程。PDE 中的边界方程与几何中的边界定义密切相关。需要设置边界上的物理信息然后使用pde.add_bc. bc_top psci.bc.Dirichlet(u, rhsref_sol) bc_down psci.bc.Dirichlet(u, rhsref_sol) bc_left psci.bc.Dirichlet(u, rhsref_sol) bc_right psci.bc.Dirichlet(u, rhsref_sol)pde.add_bc(top, bc_top) pde.add_bc(down, bc_down) pde.add_bc(left, bc_left) pde.add_bc(right, bc_right)一旦准备好方程和问题域就应该给出离散化方法。此配方将用于在训练开始之前生成训练数据。 pde_disc pde.discretize(geo_discgeo_disc)3、构建神经网络 现在 PDE 部分几乎完成了我们继续构建神经网络。通过创建psci.network.FCNet对象来定义完全连接的网络很简单。以下是我们如何使用双曲正切作为激活函数创建一个由 5 个隐藏层组成的 FFN每个隐藏层有 20 个神经元。 net psci.network.FCNet(num_ins2, num_outs1, num_layers5, hidden_size20, activationtanh)接下来最重要的步骤之一是定义损失函数。这里我们使用 L2 损失。 loss psci.loss.L2()通过设计该loss对象传达了 PDE 的完整信息。现在结合神经网络和损失我们创建psci.algorithm.PINNs模型算法。 algo psci.algorithm.PINNs(netnet, lossloss)接下来通过插入 Adam 优化器构建求解器您就可以开始训练了。在此示例中使用了 Adam 优化器并给出了 0.001 的学习率。 该类将此处psci.solver.Solver调用的 PINNs 模型和优化器捆绑到公开接口 algo的求解器对象中。接受一个关键字参数num_epoch指定每个批次的 epoch 数。 100epoch用时3秒10000估计用时300秒。 opt psci.optimizer.Adam(learning_rate0.001, parametersnet.parameters()) solver psci.solver.Solver(pdepde_disc, algoalgo, optopt) solution solver.solve(num_epoch10000) # 10000 最后solver.solve返回一个函数该函数计算几何中给定点的解值。将该函数应用于几何将输出转换为 Numpy然后您可以验证结果。 psci.visu.save_vtk是一个快速可视化的辅助工具。它将图形保存在 vtp 文件中可以使用Paraview播放。 psci.visu.save_vtk(geo_discpde_disc.geometry, datasolution) # MSE # TODO: solution array to dict: interior, bc cord pde_disc.geometry.interior ref ref_sol(cord[:, 0], cord[:, 1]) mse2 np.linalg.norm(solution[0][:, 0] - ref, ord2)**2n 1 for cord in pde_disc.geometry.boundary.values():ref ref_sol(cord[:, 0], cord[:, 1])mse2 np.linalg.norm(solution[n][:, 0] - ref, ord2)**2n 1mse mse2 / npointsprint(MSE is: , mse)五、实践3、拉普拉斯方程 在 PaddleScience 中为简单的拉普拉斯方程构建 PINN 模型。 若只需要训练.py文件则可以省略上面所有的步骤只需要完成下面三步即可 安装相关软件包 !pip install numpy scipy sympy matplotlib vtk pyevtk pandas wget visualdl 设置环境变量 %env PYTHONPATH/home/aistudio/PaddleScience 执行训练程序 !cd ~/PaddleScience/examples/laplace python laplace2d.py # cpu 运行5分钟 新版本gpu下1分40秒。 # !pip install numpy scipy sympy matplotlib vtk pyevtk pandas wget visualdl %env PYTHONPATH/home/aistudio/PaddleScience !cd ~/PaddleScience/examples/laplace python laplace2d.py 输出信息 epoch: 22 loss: 0.084736794 eq loss: 0.00025607698 bc loss: 0.0052932343 ic loss: 0.0 data loss: 0.0 epoch: 23 loss: 0.084736794 eq loss: 0.00025607698 bc loss: 0.0052932343 ic loss: 0.0 data loss: 0.0 epoch: 24 loss: 0.084736794 eq loss: 0.00025607698 bc loss: 0.0052932343 ic loss: 0.0 data loss: 0.0 epoch: 25 loss: 0.084736794 eq loss: 0.00025607698 bc loss: 0.0052932343 ic loss: 0.0 data loss: 0.0 MSE is: 4.461478115287425e-06 六、实践4、3D绕柱 # 3d 绕柱 15分钟1300epoch。 2000个epoch预计23分钟 。 !cd ~/PaddleScience/examples/cylinder/3d_steady/ python cylinder3d_steady.py# 顶盖驱动型腔流 gpu 52分钟 # !cd ~/PaddleScience/examples/ldc python ldc2d_steady.py# 多孔介质中的达西流 gpu 6分38秒 # !cd ~/PaddleScience/examples/darcy/ python darcy2d.py七、问题和技巧 如何打开vtp文件 可以使用paraview打开vtp文件。 这里也提供了一个readvtp.py文件放在work目录下。可以将这个文件和vtp文件都下载到本地然后执行python readvtp.py rslt_u.vtp即可打开该文件是3d的哦可以用鼠标旋转看看。 本机需要安装vtk库pip install vtk。 新版本科学工具包的存盘文件为vtu不能用下面的小程序打开打开后看不到东西。需要安装下载paraview来打开。 %%writefile ~/work/readvtp.py import vtkmodules.vtkInteractionStyle # noinspection PyUnresolvedReferences import vtkmodules.vtkRenderingOpenGL2 from vtkmodules.vtkCommonColor import vtkNamedColors from vtkmodules.vtkIOXML import vtkXMLPolyDataReader from vtkmodules.vtkRenderingCore import (vtkActor,vtkPolyDataMapper,vtkRenderWindow,vtkRenderWindowInteractor,vtkRenderer )def get_program_parameters():import argparsedescription Read a VTK XML PolyData file.epilogue parser argparse.ArgumentParser(descriptiondescription, epilogepilogue,formatter_classargparse.RawDescriptionHelpFormatter)parser.add_argument(filename, helphorse.vtp.)args parser.parse_args()return args.filenamedef main():colors vtkNamedColors()filename get_program_parameters()reader vtkXMLPolyDataReader()reader.SetFileName(filename)reader.Update()mapper vtkPolyDataMapper()mapper.SetInputConnection(reader.GetOutputPort())actor vtkActor()actor.SetMapper(mapper)actor.GetProperty().SetColor(colors.GetColor3d(Tan))# Create a rendering window and rendererren vtkRenderer()renWin vtkRenderWindow()renWin.AddRenderer(ren)renWin.SetWindowName(ReadVTP)# Create a renderwindowinteractoriren vtkRenderWindowInteractor()iren.SetRenderWindow(renWin)# Assign actor to the rendererren.AddActor(actor)# Enable user interface interactoriren.Initialize()renWin.Render()ren.SetBackground(colors.GetColor3d(AliceBlue))ren.GetActiveCamera().SetPosition(-0.5, 0.1, 0.0)ren.GetActiveCamera().SetViewUp(0.1, 0.0, 1.0)renWin.Render()iren.Start()if __name__ __main__:main() 八、调试纠错 报错cannot import name ‘jacobian’ import paddlescienc报错15 import paddle16 import paddle.nn.functional as F --- 17 from paddle.autograd import jacobian, hessian, batch_jacobian, batch_hessian18 from ..pde import first_order_rslts, first_order_derivatives, second_order_derivatives19 from .loss_base import LossBase ImportError: cannot import name jacobian from paddle.autograd (/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/autograd/__init__.py) 估计应该用最新版本才可以 安装最新develop版本问题解决 没有版本ModuleNotFoundError: No module named ‘paddlescience’ 要在科学工具包的根目录执行 把文件直接放在科学工具包根目录然后执行。 后期是采用setup安装科学工具包的方式来解决路径依赖问题。 OSError: (External) CUBLAS error(7) OSError: (External) CUBLAS error(7). [Hint: CUBLAS_STATUS_INVALID_VALUE. An unsupported value or parameter was passed to the function (a negative vector size, for example). To correct: ensure that all the parameters being passed have valid values. ] (at /paddle/paddle/fluid/platform/device/gpu/cuda/cuda_helper.h:87)[operator uniform_random error]飞桨版本出错因为是切换到gpu环境安装的时候选了cuda11版本的飞桨安装后报错。 选择飞桨cuda10.1版本的就ok了 后期是采用系统自带的飞桨2.3正式版本就没有安装的烦恼了。 执行python ldc2d.py的时候报错 epoch/num_epoch: 29999 / 30000 batch/num_batch: 1 / 1 loss: 0.83008355 eq_loss: 0.5134626 bc_loss: 0.652223 epoch/num_epoch: 30000 / 30000 batch/num_batch: 1 / 1 loss: 0.7781308 eq_loss: 0.47800368 bc_loss: 0.61400324 Traceback (most recent call last):File ldc2d.py, line 97, in moduleopenfoam_u np.load(./openfoam/openfoam_u_100.npy)File /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/numpy/lib/npyio.py, line 417, in loadfid stack.enter_context(open(os_fspath(file), rb)) FileNotFoundError: [Errno 2] No such file or directory: ./openfoam/openfoam_u_100.npy原来是还有一个目录没有cp到当前目录使用命令cp -r examples/ldc2d/openfoam . 即可。 后期是采用setup安装科学工具包来解决路径依赖问题。 报错unexpected keyword argument ‘space_steps’ ---------------------------------------------------------------------------TypeError Traceback (most recent call last)/tmp/ipykernel_444/2834758931.py in module ---- 1 pdes, geo psci.discretize(pdes, geo, space_steps(101, 101)) TypeError: discretize() got an unexpected keyword argument space_steps原因是应该是space_nsteps命令为pdes, geo psci.discretize(pdes, geo, space_steps(101, 101)) 文档有误。 新版本已经解决该问题。 报错Received [3] in X is not equal to [2] in Y at i:1 /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/paddle/fluid/dygraph/math_op_patch.py in __impl__(self, other_var)262 axis -1263 math_op getattr(_C_ops, op_type) -- 264 return math_op(self, other_var, axis, axis)265 266 comment OpProtoHolder.instance().get_op_proto(op_type).comment ValueError: (InvalidArgument) Broadcast dimension mismatch. Operands could not be broadcast together with the shape of X [400, 3] and the shape of Y [400, 2]. Received [3] in X is not equal to [2] in Y at i:1.[Hint: Expected x_dims_array[i] y_dims_array[i] || x_dims_array[i] 1 || y_dims_array[i] 1 true, but received x_dims_array[i] y_dims_array[i] || x_dims_array[i] 1 || y_dims_array[i] 1:0 ! true:1.] (at /paddle/paddle/pten/kernels/hybird/general/elementwise_base.h:373)[operator elementwise_sub error]解决方法将pdes.set_bc_value(bc_valuebc_value)修改为 pdes.set_bc_value(bc_valuebc_value, bc_check_dim[0, 1]) 30000步报None epoch/num_epoch: 29999 / 30000 batch/num_batch: 1 / 1 loss: nan eq_loss: nan bc_loss: nan epoch/num_epoch: 30000 / 30000 batch/num_batch: 1 / 1 loss: nan eq_loss: nan bc_loss: nan MSE_u: nan MSE_v: nan MSE_u_400: nan MSE_v_400: nan通过报issue得知换新的飞桨开发版就好了。 最终飞桨2.3正式版之后的都可以。 环境变量设置问题 在AIStudio notebook下环境变量设置有些坑比如命令行下使用export PYTHONPATH$PYTHONPATH:/home/aistudio/PaddleScience/然后就可以正常使用科学包了。而在notebook下使用%env PYTHONPATH$PYTHONPATH:/home/aistudio/PaddleScience/或者env PYTHONPATH/home/aistudio/PaddleScience/都不能正常导入科学工具包即import paddlescience会报错。 最终解决方法是写setup.py文件手动安装科学工具包。 报错hijack_call.c:658 cuInit error unknown error !python laplace2d.py 报错 重启用飞桨2.3版本 报错No module named ‘sympy’ import sympy ModuleNotFoundError: No module named sympy解决方法使用AIStudio经典版。即不使用BML版本。 结束语 用飞桨划时代让我们荡起双桨在AI的海洋乘风破浪 飞桨官网https://www.paddlepaddle.org.cn 因为水平有限难免有不足之处还请大家多多帮助。 作者段春华 网名skywalk 或 天马行空济宁市极快软件科技有限公司的AI架构师百度飞桨PPDE。 我在AI Studio上获得至尊等级点亮11个徽章来关注啊~ https://aistudio.baidu.com/aistudio/personalcenter/thirdview/141218
http://www.zqtcl.cn/news/119575/

相关文章:

  • 金融企业网站整站源码网站需要写哪些内容
  • 重庆做网站的网络公司河北建设厅官方网站八大员考试
  • 网站域名缴费服装企业网站建设现状
  • 南阳建设网站哪家好做金融网站
  • 挖矿网站怎么做域名注册需要多少钱?
  • 哈尔滨制作网站企业各位给推荐个网站
  • 程序员做网站类的网站犯法吗wordpress源码系统下载
  • 西安注册公司在哪个网站国际知名工程咨询公司
  • 重庆市网站备案材料做网站和做新媒体运营
  • 大岭山网站建设公司网站建设需要具备的能力
  • 网站建设接外包流程网上可以报警备案吗
  • 建筑网站接单WordPress文章数据转emlog
  • 海口网络平台网站开发wordpress on lnmp
  • 手机怎么登录自己做的网站免费注册域名网站知乎
  • 万宁市住房和城乡建设局网站网页游戏制作过程的
  • 网站建设批复意见浏览有关小城镇建设的网站 记录
  • 做国际贸易做什么网站遵义做网站优化
  • 电商平台正在建设中网站页面提示开发手机网站用什么好
  • 电商设计素材网站推荐百度云app下载安装
  • 网站怎样和首页做链接地址百度怎么打广告在首页
  • 眉县做网站网站开发技术可行性分析
  • 深圳求职网站哪个好网站上面的在线咨询是怎么做的
  • 做饰品一般用什么网站做首饰凡客数据
  • 工业电商做网站怎么样wordpress 韩国 主题
  • 网站的优化从几个方面网站建设需注意哪些事项
  • 网站建设的技术有哪些内容东莞网站建设最优
  • 网站建设税费很多网站没有后台
  • 百度云主机上装网站flash怎么做网页
  • 外贸网站能用阿里云吗哔哩哔哩网页版打不开
  • 南宁月嫂网站建设财经直播的网站开发一个多少钱