制作企业网站欢迎界面素材,cuntlove wordpress,广州云购网站建设,公众号怎么开通视频号文章目录 多态的概念多态的构成条件虚函数的重写虚函数重写的两个例外 重载、重写(覆盖)、重定义(隐藏)对比C11 final 和 override关键字抽象类接口继承和普通继承多态的原理虚函数表多态的原理 单继承和多继承关系的虚函数表单继承中的虚函数表多继承中的虚函数表 多态的概念 … 文章目录 多态的概念多态的构成条件虚函数的重写虚函数重写的两个例外 重载、重写(覆盖)、重定义(隐藏)对比C11 final 和 override关键字抽象类接口继承和普通继承多态的原理虚函数表多态的原理 单继承和多继承关系的虚函数表单继承中的虚函数表多继承中的虚函数表 多态的概念
多态的概念通俗来说就是多种形态具体点就是去完成某个行为当不同的对象去完成时会 产生出不同的状态 比如买票时都是同一个景点有学生票半价和成人票全价等等
多态的构成条件
多态的构成条件主要涉及两个概念虚函数和继承。 虚函数
虚函数是C中用于实现运行时多态性的关键概念。被virtual修饰的类成员函数称为虚函数
class Person {
public://虚函数virtual void BuyTicket() {//....}
};在继承中构成多态还需要满足两个条件
被调用的函数必须是虚函数且派生类必须对基类的虚函数进行重写父类的指针或者引用进行调用
举个栗子
class Person {
public://虚函数virtual void BuyTicket() {cout 买票-全价 endl;}
};
class Student : public Person
{//重写基类函数virtual void BuyTicket(){cout 买票-半价 endl;}
};
//必须是基类对象指针或引用调用
void Func(Person people)
{people.BuyTicket();
}
void Test()
{Person Mike;Func(Mike);Student Johnson;Func(Johnson);
}
int main()
{Test();return 0;
}父类对象和子类对象调用同一个函数得到的结果不一样
运行结果 解释 虚函数的重写
虚函数重写(也叫覆盖)派生类中有一个跟基类完全相同的虚函数(即派生类虚函数与基类虚函数的 返回值类型、函数名字、参数列表完全相同)称派生类的虚函数重写了基类的虚函数。
在上面的例子中 派生类Student中的BuyTicket函数就重写了基类Person的虚函数
虚函数重写的两个例外
协变 派生类重写基类虚函数时与基类虚函数返回值类型不同且返回值必须是父子关系的指针或者引用。即基类虚函数返回基类对象的指 针或者引用派生类虚函数返回派生类对象的指针或者引用时称为协变。 比如
class Person
{
public:// 基类虚函数返回基类指针virtual Person* BuyTicket() {return new Person();}
};
class Student : public Person
{// 派生类协变返回更具体的类型 Student*virtual Student* BuyTicket(){return new Student();}
};上面例子中也构成虚函数的重写派生类和基类的返回值不同,称为协变
析构函数的重写(基类与派生类析构函数的名字不同) 如果基类的析构函数为虚函数此时派生类析构函数只要定义无论是否加virtual关键字 都与基类的析构函数构成重写虽然基类与派生类析构函数名字不同。虽然函数名不相同 看起来违背了重写的规则其实不然这里可以理解为编译器对析构函数的名称做了特殊处 理编译后析构函数的名称统一处理成destructor。
class Person
{
public:virtual ~Person(){cout ~Person() endl;}
};
class Student : public Person
{
public:~Student(){cout ~Student() endl;}
};
int main()
{Person* p1 new Person();Person* p2 new Student();// 只有派生类Student的析构函数重写了Person的析构函数下面的delete对象调用析构函数//才能构成多态才能保证p1和p2指向的对象正确的调用析构函数。delete p1;delete p2;
}运行结果 12行加不加virtual关键字 都构成重写
重载、重写(覆盖)、重定义(隐藏)对比 C11 final 和 override关键字
C对函数重写的要求比较严格有些情况可能由于疏忽导致无法构成重写这种情况编译器不会报错程序会正常运行但是得到的结果不是正确的所以C11引入了final和override关键字
final 修饰虚函数表示该虚函数不能再被重写
class Person
{virtual void Func() final{cout virtual void Func() final endl;}
};class Student : public Person
{virtual void Func()//error{cout virtual void Func() endl;}
};编译时报错 override 检查派生类是否重写了基类虚函数。如果没重写编译器会报错。
class Person
{
public:virtual void Func() const {cout virtual void Func() endl;}
};class Student : public Person
{
public:virtual void Func() override//error 派生类没有正确重写基类Func函数 编译器会报错少了const修饰{cout virtual void Func() endl;}
};抽象类
在虚函数的后面写上 0 则这个函数为纯虚函数。包含纯虚函数的类叫做抽象类也叫接口 类抽象类不能实例化出对象。派生类继承后也不能实例化出对象只有重写纯虚函数派生类才能实例化出对象。纯虚函数规范了派生类必须重写另外纯虚函数更体现出了接口继承。
class Person
{
public:virtual void Abstract() 0;//纯虚函数 Person类为抽象类 Person类不能实例化出对象
};//派生类
class Student : public Person
{
public:virtual void Abstract() override//派生类必须重写纯虚函数派生类才可以实例化出对象否则不行{cout Hello World\n;}};
int main()
{//Person p1; //error 抽象类无法实例化对象Student s1;Person* s1prt s1;//使用基类指针访问s1prt-Abstract();return 0;
}接口继承和普通继承
普通继续 派生类继承了基类可以使用函数继承的是函数的实现接口继承虚函数的继承是一种接口继承派生类继承的是基类虚函数的接口目的是为了重写达成多态继承的是接口。所以如果不实现多态不要把函数定义成虚函数。
多态的原理
虚函数表
#include iostream
using namespace std;
class Person
{
public:virtual void Func();
private:int _a;char _b;
};
int main()
{cout sizeof(Person) endl;return 0;
}上面代码求Person所占字节数大小 按照内存对齐的规则Person类的大小应该是8(32位下。 但实际结果是12 这里不仅要内存对齐当实例化一个对象后发现成员变量不仅仅只有_a,和_b 。还有一个指针_vfptr(虚函数表指针) 一个含有虚函数的类都会有至少一个虚函数表指针虚函数表指针存放在对象的前4个字节或者前8个字节(32位下4个字节64位下8个字节)。而虚函数的地址会被存放到虚函数表中。虚函数表也简称为虚表虚函数表指针指向虚表。虚函数表本质是一个存虚函数指针的指针数组一般情况这个数组最后面放了一个nullptr(VS编译器下做了处理g没有处理) 一个含有虚函数的类中都至少都有一个虚函数表指针因为虚函数的地址要被放到虚函数表中虚函数表也简称虚表。 通过下面的代码进行分析派生类中的虚表。
class Person
{
public:virtual void Func(){cout virtual void Func() endl;}virtual void Func2(){cout virtual void Func() endl;}void Func3()//普通函数{cout void Func3() endl;}
private:int _a 0;char _b 0;
};
class Student : public Person
{virtual void Func() override//重写基类函数{cout virtual void Func() endl;}
};
int main()
{ Person p1;//基类对象Student s1;//派生类对象return 0;
}Person类中有两个虚函数一个非虚函数。Student继承了Person类并且重写了Func函数。实例化出基类和派生类对象 监视窗口如下 可以发现派生类对象也有一个虚表指针虚表由两部分组成一部分是继承基类的成员另一部分是自己的成员。基类对象和派生类对象的虚表是不一样的派生类重写了基类的Func虚函数所以派生类对象虚表中存的是派生类重写后的函数地址。所以虚函数的重写也覆盖覆盖值得是虚表中虚函数的覆盖重写是语法的叫法覆盖是底层的原理。Func2虚函数被继承下来后也会被放到虚表中Func3也会被继承下来但是Func3不是虚函数所以不会放到虚表中
多态的原理
class Person {
public://虚函数virtual void BuyTicket(){cout 买票-全价 endl;}
};
class Student : public Person
{//重写基类函数virtual void BuyTicket(){cout 买票-半价 endl;}
};
//必须是基类对象指针或引用调用
void Func(Person people)
{people.BuyTicket();
}
void Test()
{Person p1;Func(p1);Student s1;Func(s1);
}对于上面的例子 当people指向的是基类对象时people.BuyTicket();就会在基类对象p1中的虚表中找到对应虚函数当people指向的是派生类对象时people.BuyTicket();就会在派生类对象s1中的虚表中找到对应的虚函数通过虚表实现了了不同对象去完成同一行为时展现出不同的形态。
单继承和多继承关系的虚函数表
单继承中的虚函数表
class Base
{
public:virtual void func1() { cout Base::func1 endl; }virtual void func2() { cout Base::func2 endl; }
private:int a;
};
class Derive :public Base
{
public:virtual void func1() { cout Derive::func1 endl; }virtual void func3() { cout Derive::func3 endl; }virtual void func4() { cout Derive::func4 endl; }
private:int _b;
};
int main()
{Base b1;Derive d1;return 0;
}上面代码中基类Base有两个虚函数派生类Derive继承了Base类并且重写了func1函数且新增了两个虚函数func3 和func4
单继承对象模型 通过监视窗口发现派生类中新增的虚函数func3 和func4 没有进虚函数表。(不知道是编译器故意的 还是编译器的 bug) 我们可以利用程序自己打印虚表来观察参考代码如下。
class Base
{
public:virtual void func1() { cout Base::func1 endl; }virtual void func2() { cout Base::func2 endl; }
private:int a;
};
class Derive :public Base
{
public:virtual void func1() { cout Derive::func1 endl; }virtual void func3() { cout Derive::func3 endl; }virtual void func4() { cout Derive::func4 endl; }
private:int b;
};
typedef void (*VF_Ptr)();//函数指针
//VF_Prt table[];//函数指针数组//打印虚函数表
void PrintVFTable(VF_Ptr table[])
{for (int i 0; table[i] ! nullptr; i){printf(table[%d] %p\n, i, table[i]);VF_Ptr Fun table[i];//取出函数地址对其进行访问Fun();}cout endl;
}
int main()
{Base b1;Derive d1;//虚函数表指针在对象的头四个字节(32位下), 拿到对象的地址对其强制类型转换:(int*)p1//在解引用就能拿到对象前四个字节地址:*((int*)p1)在将其强制类型转换位函数指针(VF_Ptr*)(*(int*)p1)PrintVFTable((VF_Ptr*)(*(int*)b1));PrintVFTable((VF_Ptr*)(*(int*)d1));return 0;
}运行结果: 可以看出不论是派生类还是基类只要是虚函数都会存到虚表中
多继承中的虚函数表
class Base1 {
public:virtual void func1() { cout Base1::func1 endl; }virtual void func2() { cout Base1::func2 endl; }
private:int _a;
};
class Base2 {
public:virtual void func1() { cout Base2::func1 endl; }virtual void func2() { cout Base2::func2 endl; }
private:int _b;
};
class Derive : public Base1, public Base2 {
public:virtual void func1() { cout Derive::func1 endl; }virtual void func3() { cout Derive::func3 endl; }
private:int _d;
};多继承对象模型 多继承对象模型对比单继承模型就复杂很多 派生类会有两个虚表监视窗口仍然无法观察 通过程序打印查看
typedef void(*VFPTR) ();
void PrintVTable(VFPTR vTable[])
{cout 虚表地址 vTable endl;for (int i 0; vTable[i] ! nullptr; i){printf( 第%d个虚函数地址 :0X%x,-, i, vTable[i]);VFPTR f vTable[i];f();}cout endl;
}
int main()
{Derive d;VFPTR* vTableb1 (VFPTR*)(*(int*)d);PrintVTable(vTableb1);//派生类第二个虚表指针需要加行Base对象大小的偏移量才能获得VFPTR* vTableb2 (VFPTR*)(*(int*)((char*)d sizeof(Base1)));PrintVTable(vTableb2);return 0;
}结果如下 和上面的对象模型一样。 可以发现 多继承派生类的未重写的虚函数放在第一个继承基类部分的虚函数表中