淘宝网站建设不允许,wordpress关闭裁剪缩略图,京东云擎 wordpress,网站怎样做权重Dataset与DataLoader的关系 Dataset: 构建一个数据集#xff0c;其中含有所有的数据样本DataLoader#xff1a;将构建好的Dataset#xff0c;通过shuffle、划分batch、多线程num_workers运行的方式#xff0c;加载到可训练的迭代容器。
import torch
from torch.utils.dat…Dataset与DataLoader的关系 Dataset: 构建一个数据集其中含有所有的数据样本DataLoader将构建好的Dataset通过shuffle、划分batch、多线程num_workers运行的方式加载到可训练的迭代容器。
import torch
from torch.utils.data import Dataset, DataLoaderclass MyDataset(Dataset):创建自己的数据集def __init__(self):初始化构建数据集所需要的参数passdef __getitem__(self, index):来获取数据集中样本的索引passdef __len__(self):获取数据集中的样本个数pass# 实例化自定义的数据集
dataset MyDataset()
# 将自定义的数据集加载到可训练的迭代容器
train_loader DataLoader(datasetdataset, # 自定义的数据集batch_size32, # 数据集中小批量的大小shuffleTrue, # 是否要打乱数据集中样本的次序num_workers2) # 是否要并行
实战1CSV数据集结构化数据集
import torch
import numpy as np
from torch.utils.data import Dataset, DataLoaderclass MyDataset(Dataset):创建自己的数据集def __init__(self, filepath):初始化构建数据集所需要的参数xy np.loadtxt(filepath, delimiter,, dtypenp.float32)self.len xy.shape[0] # 查看数据集中样本的个数self.x_data torch.from_numpy(xy[:, :-1])self.y_data torch.from_numpy(xy[:, [-1]])print(数据已准备好......)def __getitem__(self, index):为了支持下标操作, 即索引dataset[index]来获取数据集中样本的索引return self.x_data[index], self.y_data[index]def __len__(self):为了使用len(dataset)获取数据集中的样本个数return self.lenfile D:\\BaiduNetdiskDownload\\Dataset_Dataload\\diabetes1.csv 1.使用 MyDataset类 构建自己的dataset
mydataset MyDataset(file)2.使用 DataLoader 构建train_loader
train_loader DataLoader(datasetmydataset,batch_size32,shuffleTrue,num_workers0)class MyModel(torch.nn.Module):定义自己的模型def __init__(self):super().__init__()self.linear1 torch.nn.Linear(8, 6)self.linear2 torch.nn.Linear(6, 4)self.linear3 torch.nn.Linear(4, 1)self.sigmooid torch.nn.Sigmoid()def forward(self, x):x self.sigmooid(self.linear1(x))x self.sigmooid(self.linear2(x))x self.sigmooid(self.linear3(x))return x# 实例化模型
model MyModel()# 定义损失函数
criterion torch.nn.BCELoss(size_averageTrue)
# 定义优化器
optimizer torch.optim.SGD(model.parameters(), lr0.1)if __name__ __main__:for epoch in range(10):for i, data in enumerate(train_loader, 0):# 1. 准备数据inputs, labels data# 2. 前向传播y_pred model(inputs)loss criterion(y_pred, labels)print(epoch, i, loss.item())# 3. 反向传播optimizer.zero_grad()loss.backward()# 4. 梯度更新optimizer.step()实战2图片数据集
├── flower_data —├── flower_photos解压的数据集文件夹3670个样本 —├── train生成的训练集3306个样本 —└── val生成的验证集364个样本
主函数文件main.py
import osimport torch
from torchvision import transformsfrom my_dataset import MyDataSet
from utils import read_split_data, plot_data_loader_imageroot ../data/flower_data/flower_photos # 数据集所在根目录def main():device torch.device(cuda if torch.cuda.is_available() else cpu)print(using {} device..format(device))train_images_path, train_images_label, val_images_path, val_images_label read_split_data(root)data_transform {train: transforms.Compose([transforms.RandomResizedCrop(224),transforms.RandomHorizontalFlip(),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]),val: transforms.Compose([transforms.Resize(256),transforms.CenterCrop(224),transforms.ToTensor(),transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])}train_data_set MyDataSet(images_pathtrain_images_path,images_classtrain_images_label,transformdata_transform[train])batch_size 8nw min([os.cpu_count(), batch_size if batch_size 1 else 0, 8]) # number of workersprint(Using {} dataloader workers.format(nw))train_loader torch.utils.data.DataLoader(train_data_set,batch_sizebatch_size,shuffleTrue,num_workersnw,collate_fntrain_data_set.collate_fn)# plot_data_loader_image(train_loader)for epoch in range(100):for step, data in enumerate(train_loader):images, labels data# 然后在进行相应的训练操作即可if __name__ __main__:main()
自定义数据集文件my_dataset.py
from PIL import Image
import torch
from torch.utils.data import Datasetclass MyDataSet(Dataset):自定义数据集def __init__(self, images_path: list, images_class: list, transformNone):self.images_path images_pathself.images_class images_classself.transform transformdef __len__(self):return len(self.images_path)def __getitem__(self, item):img Image.open(self.images_path[item])# RGB为彩色图片L为灰度图片if img.mode ! RGB:raise ValueError(image: {} isnt RGB mode..format(self.images_path[item]))label self.images_class[item]if self.transform is not None:img self.transform(img)return img, labelstaticmethoddef collate_fn(batch):# 官方实现的default_collate可以参考# https://github.com/pytorch/pytorch/blob/67b7e751e6b5931a9f45274653f4f653a4e6cdf6/torch/utils/data/_utils/collate.pyimages, labels tuple(zip(*batch))images torch.stack(images, dim0)labels torch.as_tensor(labels)return images, labels
功能文件utils.py训练集、验证集的划分与可视化
import os
import json
import pickle
import randomimport matplotlib.pyplot as pltdef read_split_data(root: str, val_rate: float 0.2):random.seed(0) # 保证随机结果可复现assert os.path.exists(root), dataset root: {} does not exist..format(root) # 判断路径是否存在# 遍历文件夹一个文件夹对应一个类别flower_class [cla for cla in os.listdir(root) if os.path.isdir(os.path.join(root, cla))]# 排序保证顺序一致flower_class.sort()# 生成类别名称以及对应的数字索引: 字典{’花名‘0’花名‘1···}class_indices dict((k, v) for v, k in enumerate(flower_class))json_str json.dumps(dict((val, key) for key, val in class_indices.items()), indent4) # 将花名与对应的序号分行保存with open(class_indices.json, w) as json_file:json_file.write(json_str)train_images_path [] # 存储训练集的所有图片路径train_images_label [] # 存储训练集图片对应索引信息val_images_path [] # 存储验证集的所有图片路径val_images_label [] # 存储验证集图片对应索引信息every_class_num [] # 存储每个类别的样本总数supported [.jpg, .JPG, .png, .PNG] # 支持的文件后缀类型# 遍历每个文件夹下的文件for cla in flower_class:cla_path os.path.join(root, cla)# 遍历获取supported支持的所有文件路径images [os.path.join(root, cla, i) for i in os.listdir(cla_path)if os.path.splitext(i)[-1] in supported]# 获取该类别对应的索引image_class class_indices[cla]# 记录该类别的样本数量every_class_num.append(len(images))# 按比例随机采样验证样本val_path random.sample(images, kint(len(images) * val_rate))for img_path in images:if img_path in val_path: # 如果该路径在采样的验证集样本中则存入验证集val_images_path.append(img_path)val_images_label.append(image_class)else: # 否则存入训练集train_images_path.append(img_path)train_images_label.append(image_class)print({} images were found in the dataset..format(sum(every_class_num)))print({} images for training..format(len(train_images_path)))print({} images for validation..format(len(val_images_path)))plot_image Trueif plot_image:# 绘制每种类别个数柱状图plt.bar(range(len(flower_class)), every_class_num, aligncenter)# 将横坐标0,1,2,3,4替换为相应的类别名称plt.xticks(range(len(flower_class)), flower_class)# 在柱状图上添加数值标签for i, v in enumerate(every_class_num):plt.text(xi, yv 5, sstr(v), hacenter)# 设置x坐标plt.xlabel(image class)# 设置y坐标plt.ylabel(number of images)# 设置柱状图的标题plt.title(flower class distribution)plt.show()return train_images_path, train_images_label, val_images_path, val_images_labeldef plot_data_loader_image(data_loader):batch_size data_loader.batch_sizeplot_num min(batch_size, 4)json_path ./class_indices.jsonassert os.path.exists(json_path), json_path does not exist.json_file open(json_path, r)class_indices json.load(json_file)for data in data_loader:images, labels datafor i in range(plot_num):# [C, H, W] - [H, W, C]img images[i].numpy().transpose(1, 2, 0)# 反Normalize操作img (img * [0.229, 0.224, 0.225] [0.485, 0.456, 0.406]) * 255label labels[i].item()plt.subplot(1, plot_num, i1)plt.xlabel(class_indices[str(label)])plt.xticks([]) # 去掉x轴的刻度plt.yticks([]) # 去掉y轴的刻度plt.imshow(img.astype(uint8))plt.show()def write_pickle(list_info: list, file_name: str):with open(file_name, wb) as f:pickle.dump(list_info, f)def read_pickle(file_name: str) - list:with open(file_name, rb) as f:info_list pickle.load(f)return info_list