当前位置: 首页 > news >正文

通过一个站点的建设方案株洲新站seo

通过一个站点的建设方案,株洲新站seo,临夏网站建设,企业网站备案怎么搞NLP简介 HuggingFace简介 hugging face在NLP领域最出名#xff0c;其提供的模型大多都是基于Transformer的。为了易用性#xff0c;Hugging Face还为用户提供了以下几个项目#xff1a; Transformers(github, 官方文档): Transformers提供了上千个预训练好的模型可以用于不…NLP简介 HuggingFace简介 hugging face在NLP领域最出名其提供的模型大多都是基于Transformer的。为了易用性Hugging Face还为用户提供了以下几个项目 Transformers(github, 官方文档): Transformers提供了上千个预训练好的模型可以用于不同的任务例如文本领域、音频领域和CV领域。该项目是HuggingFace的核心可以说学习HuggingFace就是在学习该项目如何使用。Datasets(github, 官方文档): 一个轻量级的数据集框架主要有两个功能①一行代码下载和预处理常用的公开数据集 ② 快速、易用的数据预处理类库。Accelerate(github, 官方文档): 帮助Pytorch用户很方便的实现 multi-GPU/TPU/fp16。SpaceSpace提供了许多好玩的深度学习应用可以尝试玩一下。 Transformers 1. Pipeline流水线 将数据预处理tokenizer、模型调用model、结果后处理组装成一个流水线 Pipeline原理 pipeline(data, model, tokenizer, divece)的原理: Pipeline使用方法 一般使用较多的方法是分别构建model和tokenizer并指定task任务类型将其分别加入pipeline 每类pipeline的具体使用方法可以点进具体Pipeline类的源码中查看 Pipeline的Task类型 audio-classification {‘impl’: class ‘transformers.pipelines.audio_classification.AudioClassificationPipeline’, ‘tf’: (), ‘pt’: (class ‘transformers.models.auto.modeling_auto.AutoModelForAudioClassification’,), ‘default’: {‘model’: {‘pt’: (‘superb/wav2vec2-base-superb-ks’, ‘372e048’)}}, ‘type’: ‘audio’}automatic-speech-recognition {‘impl’: class ‘transformers.pipelines.automatic_speech_recognition.AutomaticSpeechRecognitionPipeline’, ‘tf’: (), ‘pt’: (class ‘transformers.models.auto.modeling_auto.AutoModelForCTC’, class ‘transformers.models.auto.modeling_auto.AutoModelForSpeechSeq2Seq’), ‘default’: {‘model’: {‘pt’: (‘facebook/wav2vec2-base-960h’, ‘55bb623’)}}, ‘type’: ‘multimodal’}feature-extraction {‘impl’: class ‘transformers.pipelines.feature_extraction.FeatureExtractionPipeline’, ‘tf’: (), ‘pt’: (class ‘transformers.models.auto.modeling_auto.AutoModel’,), ‘default’: {‘model’: {‘pt’: (‘distilbert-base-cased’, ‘935ac13’), ‘tf’: (‘distilbert-base-cased’, ‘935ac13’)}}, ‘type’: ‘multimodal’}text-classification {‘impl’: class ‘transformers.pipelines.text_classification.TextClassificationPipeline’, ‘tf’: (), ‘pt’: (class ‘transformers.models.auto.modeling_auto.AutoModelForSequenceClassification’,), ‘default’: {‘model’: {‘pt’: (‘distilbert-base-uncased-finetuned-sst-2-english’, ‘af0f99b’), ‘tf’: (‘distilbert-base-uncased-finetuned-sst-2-english’, ‘af0f99b’)}}, ‘type’: ‘text’}token-classification {‘impl’: class ‘transformers.pipelines.token_classification.TokenClassificationPipeline’, ‘tf’: (), ‘pt’: (class ‘transformers.models.auto.modeling_auto.AutoModelForTokenClassification’,), ‘default’: {‘model’: {‘pt’: (‘dbmdz/bert-large-cased-finetuned-conll03-english’, ‘f2482bf’), ‘tf’: (‘dbmdz/bert-large-cased-finetuned-conll03-english’, ‘f2482bf’)}}, ‘type’: ‘text’}question-answering {‘impl’: class ‘transformers.pipelines.question_answering.QuestionAnsweringPipeline’, ‘tf’: (), ‘pt’: (class ‘transformers.models.auto.modeling_auto.AutoModelForQuestionAnswering’,), ‘default’: {‘model’: {‘pt’: (‘distilbert-base-cased-distilled-squad’, ‘626af31’), ‘tf’: (‘distilbert-base-cased-distilled-squad’, ‘626af31’)}}, ‘type’: ‘text’}table-question-answering {‘impl’: class ‘transformers.pipelines.table_question_answering.TableQuestionAnsweringPipeline’, ‘pt’: (class ‘transformers.models.auto.modeling_auto.AutoModelForTableQuestionAnswering’,), ‘tf’: (), ‘default’: {‘model’: {‘pt’: (‘google/tapas-base-finetuned-wtq’, ‘69ceee2’), ‘tf’: (‘google/tapas-base-finetuned-wtq’, ‘69ceee2’)}}, ‘type’: ‘text’}visual-question-answering {‘impl’: class ‘transformers.pipelines.visual_question_answering.VisualQuestionAnsweringPipeline’, ‘pt’: (class ‘transformers.models.auto.modeling_auto.AutoModelForVisualQuestionAnswering’,), ‘tf’: (), ‘default’: {‘model’: {‘pt’: (‘dandelin/vilt-b32-finetuned-vqa’, ‘4355f59’)}}, ‘type’: ‘multimodal’}document-question-answering {‘impl’: class ‘transformers.pipelines.document_question_answering.DocumentQuestionAnsweringPipeline’, ‘pt’: (class ‘transformers.models.auto.modeling_auto.AutoModelForDocumentQuestionAnswering’,), ‘tf’: (), ‘default’: {‘model’: {‘pt’: (‘impira/layoutlm-document-qa’, ‘52e01b3’)}}, ‘type’: ‘multimodal’}fill-mask {‘impl’: class ‘transformers.pipelines.fill_mask.FillMaskPipeline’, ‘tf’: (), ‘pt’: (class ‘transformers.models.auto.modeling_auto.AutoModelForMaskedLM’,), ‘default’: {‘model’: {‘pt’: (‘distilroberta-base’, ‘ec58a5b’), ‘tf’: (‘distilroberta-base’, ‘ec58a5b’)}}, ‘type’: ‘text’}summarization {‘impl’: class ‘transformers.pipelines.text2text_generation.SummarizationPipeline’, ‘tf’: (), ‘pt’: (class ‘transformers.models.auto.modeling_auto.AutoModelForSeq2SeqLM’,), ‘default’: {‘model’: {‘pt’: (‘sshleifer/distilbart-cnn-12-6’, ‘a4f8f3e’), ‘tf’: (‘t5-small’, ‘d769bba’)}}, ‘type’: ‘text’}translation {‘impl’: class ‘transformers.pipelines.text2text_generation.TranslationPipeline’, ‘tf’: (), ‘pt’: (class ‘transformers.models.auto.modeling_auto.AutoModelForSeq2SeqLM’,), ‘default’: {(‘en’, ‘fr’): {‘model’: {‘pt’: (‘t5-base’, ‘686f1db’), ‘tf’: (‘t5-base’, ‘686f1db’)}}, (‘en’, ‘de’): {‘model’: {‘pt’: (‘t5-base’, ‘686f1db’), ‘tf’: (‘t5-base’, ‘686f1db’)}}, (‘en’, ‘ro’): {‘model’: {‘pt’: (‘t5-base’, ‘686f1db’), ‘tf’: (‘t5-base’, ‘686f1db’)}}}, ‘type’: ‘text’}text2text-generation {‘impl’: class ‘transformers.pipelines.text2text_generation.Text2TextGenerationPipeline’, ‘tf’: (), ‘pt’: (class ‘transformers.models.auto.modeling_auto.AutoModelForSeq2SeqLM’,), ‘default’: {‘model’: {‘pt’: (‘t5-base’, ‘686f1db’), ‘tf’: (‘t5-base’, ‘686f1db’)}}, ‘type’: ‘text’}text-generation {‘impl’: class ‘transformers.pipelines.text_generation.TextGenerationPipeline’, ‘tf’: (), ‘pt’: (class ‘transformers.models.auto.modeling_auto.AutoModelForCausalLM’,), ‘default’: {‘model’: {‘pt’: (‘gpt2’, ‘6c0e608’), ‘tf’: (‘gpt2’, ‘6c0e608’)}}, ‘type’: ‘text’}zero-shot-classification {‘impl’: class ‘transformers.pipelines.zero_shot_classification.ZeroShotClassificationPipeline’, ‘tf’: (), ‘pt’: (class ‘transformers.models.auto.modeling_auto.AutoModelForSequenceClassification’,), ‘default’: {‘model’: {‘pt’: (‘facebook/bart-large-mnli’, ‘c626438’), ‘tf’: (‘roberta-large-mnli’, ‘130fb28’)}, ‘config’: {‘pt’: (‘facebook/bart-large-mnli’, ‘c626438’), ‘tf’: (‘roberta-large-mnli’, ‘130fb28’)}}, ‘type’: ‘text’}zero-shot-image-classification {‘impl’: class ‘transformers.pipelines.zero_shot_image_classification.ZeroShotImageClassificationPipeline’, ‘tf’: (), ‘pt’: (class ‘transformers.models.auto.modeling_auto.AutoModelForZeroShotImageClassification’,), ‘default’: {‘model’: {‘pt’: (‘openai/clip-vit-base-patch32’, ‘f4881ba’), ‘tf’: (‘openai/clip-vit-base-patch32’, ‘f4881ba’)}}, ‘type’: ‘multimodal’}zero-shot-audio-classification {‘impl’: class ‘transformers.pipelines.zero_shot_audio_classification.ZeroShotAudioClassificationPipeline’, ‘tf’: (), ‘pt’: (class ‘transformers.models.auto.modeling_auto.AutoModel’,), ‘default’: {‘model’: {‘pt’: (‘laion/clap-htsat-fused’, ‘973b6e5’)}}, ‘type’: ‘multimodal’}conversational {‘impl’: class ‘transformers.pipelines.conversational.ConversationalPipeline’, ‘tf’: (), ‘pt’: (class ‘transformers.models.auto.modeling_auto.AutoModelForSeq2SeqLM’, class ‘transformers.models.auto.modeling_auto.AutoModelForCausalLM’), ‘default’: {‘model’: {‘pt’: (‘microsoft/DialoGPT-medium’, ‘8bada3b’), ‘tf’: (‘microsoft/DialoGPT-medium’, ‘8bada3b’)}}, ‘type’: ‘text’}image-classification {‘impl’: class ‘transformers.pipelines.image_classification.ImageClassificationPipeline’, ‘tf’: (), ‘pt’: (class ‘transformers.models.auto.modeling_auto.AutoModelForImageClassification’,), ‘default’: {‘model’: {‘pt’: (‘google/vit-base-patch16-224’, ‘5dca96d’), ‘tf’: (‘google/vit-base-patch16-224’, ‘5dca96d’)}}, ‘type’: ‘image’}image-segmentation {‘impl’: class ‘transformers.pipelines.image_segmentation.ImageSegmentationPipeline’, ‘tf’: (), ‘pt’: (class ‘transformers.models.auto.modeling_auto.AutoModelForImageSegmentation’, class ‘transformers.models.auto.modeling_auto.AutoModelForSemanticSegmentation’), ‘default’: {‘model’: {‘pt’: (‘facebook/detr-resnet-50-panoptic’, ‘fc15262’)}}, ‘type’: ‘multimodal’}image-to-text {‘impl’: class ‘transformers.pipelines.image_to_text.ImageToTextPipeline’, ‘tf’: (), ‘pt’: (class ‘transformers.models.auto.modeling_auto.AutoModelForVision2Seq’,), ‘default’: {‘model’: {‘pt’: (‘ydshieh/vit-gpt2-coco-en’, ‘65636df’), ‘tf’: (‘ydshieh/vit-gpt2-coco-en’, ‘65636df’)}}, ‘type’: ‘multimodal’}object-detection {‘impl’: class ‘transformers.pipelines.object_detection.ObjectDetectionPipeline’, ‘tf’: (), ‘pt’: (class ‘transformers.models.auto.modeling_auto.AutoModelForObjectDetection’,), ‘default’: {‘model’: {‘pt’: (‘facebook/detr-resnet-50’, ‘2729413’)}}, ‘type’: ‘multimodal’}zero-shot-object-detection {‘impl’: class ‘transformers.pipelines.zero_shot_object_detection.ZeroShotObjectDetectionPipeline’, ‘tf’: (), ‘pt’: (class ‘transformers.models.auto.modeling_auto.AutoModelForZeroShotObjectDetection’,), ‘default’: {‘model’: {‘pt’: (‘google/owlvit-base-patch32’, ‘17740e1’)}}, ‘type’: ‘multimodal’}depth-estimation {‘impl’: class ‘transformers.pipelines.depth_estimation.DepthEstimationPipeline’, ‘tf’: (), ‘pt’: (class ‘transformers.models.auto.modeling_auto.AutoModelForDepthEstimation’,), ‘default’: {‘model’: {‘pt’: (‘Intel/dpt-large’, ‘e93beec’)}}, ‘type’: ‘image’}video-classification {‘impl’: class ‘transformers.pipelines.video_classification.VideoClassificationPipeline’, ‘tf’: (), ‘pt’: (class ‘transformers.models.auto.modeling_auto.AutoModelForVideoClassification’,), ‘default’: {‘model’: {‘pt’: (‘MCG-NJU/videomae-base-finetuned-kinetics’, ‘4800870’)}}, ‘type’: ‘video’} 2. Tokenizer分词器 Tokenizer将过去繁琐的text-to-token的过程进行简化 2.1 Tokenizer的使用方法 Step1 加载与保存 from transformers import AutoTokenizer# 从HuggingFace加载输入模型名称即可加载对应的分词器 tokenizer AutoTokenizer.from_pretrained(uer/roberta-base-finetuned-dianping-chinese)BertTokenizerFast(name_or_pathuer/roberta-base-finetuned-dianping-chinese, vocab_size21128, model_max_length1000000000000000019884624838656, is_fastTrue, padding_sideright, truncation_sideright, special_tokens{unk_token: [UNK], sep_token: [SEP], pad_token: [PAD], cls_token: [CLS], mask_token: [MASK]}, clean_up_tokenization_spacesTrue)# tokenizer 保存到本地 tokenizer.save_pretrained(本地文件夹路径)文件夹内的文件格式 (./roberta_tokenizer\\tokenizer_config.json,./roberta_tokenizer\\special_tokens_map.json,./roberta_tokenizer\\vocab.txt,./roberta_tokenizer\\added_tokens.json,./roberta_tokenizer\\tokenizer.json)# 从本地加载tokenizer tokenizer AutoTokenizer.from_pretrained(本地文件夹路径)BertTokenizerFast(name_or_pathuer/roberta-base-finetuned-dianping-chinese, vocab_size21128, model_max_length1000000000000000019884624838656, is_fastTrue, padding_sideright, truncation_sideright, special_tokens{unk_token: [UNK], sep_token: [SEP], pad_token: [PAD], cls_token: [CLS], mask_token: [MASK]}, clean_up_tokenization_spacesTrue)Step2 句子分词 : sen 弱小的我也有大梦想! tokens tokenizer.tokenize(sen) # [弱, 小, 的, 我, 也, 有, 大, 梦, 想, !]Step3 查看词典: tokenizer.vocab{湾: 3968,訴: 6260,##轶: 19824,洞: 3822,: 8100,##劾: 14288,##care: 11014,asia: 8339,##嗑: 14679,##鹘: 20965,washington: 12262,##匕: 14321,##樟: 16619,癮: 4628,day3: 11649,##宵: 15213,##弧: 15536,##do: 8828,詭: 6279,3500: 9252,124: 9377,##価: 13957,##玄: 17428,##積: 18005,##肝: 18555, ...##维: 18392,與: 5645,##mark: 9882,偽: 984,...}tokenizer.vocab_size # 21128Step4 索引转换: # 将词序列转换为id序列 ids tokenizer.convert_tokens_to_ids(tokens) ids # [2483, 2207, 4638, 2769, 738, 3300, 1920, 3457, 2682, 106]# 将id序列转换为token序列 tokens tokenizer.convert_ids_to_tokens(ids) tokens # [弱, 小, 的, 我, 也, 有, 大, 梦, 想, !]# 将token序列转换为string str_sen tokenizer.convert_tokens_to_string(tokens) str_sen # 弱 小 的 我 也 有 大 梦 想!总结——更便捷的实现方式 # 将字符串转换为id序列又称之为编码 ids tokenizer.encode(sen, add_special_tokensTrue) ids # [101, 2483, 2207, 4638, 2769, 738, 3300, 1920, 3457, 2682, 106, 102]# 将id序列转换为字符串又称之为解码 str_sen tokenizer.decode(ids, skip_special_tokensFalse) str_sen # [CLS] 弱 小 的 我 也 有 大 梦 想! [SEP]Step5 填充与截断 # 填充 ids tokenizer.encode(sen, paddingmax_length, max_length15) ids # [101, 2483, 2207, 4638, 2769, 738, 3300, 1920, 3457, 2682, 106, 102, 0, 0, 0]# 截断 ids tokenizer.encode(sen, max_length5, truncationTrue) ids # [101, 2483, 2207, 4638, 102]Step6 其他输入部分 ids tokenizer.encode(sen, paddingmax_length, max_length15) ids # [101, 2483, 2207, 4638, 2769, 738, 3300, 1920, 3457, 2682, 106, 102, 0, 0, 0]attention_mask [1 if idx ! 0 else 0 for idx in ids] token_type_ids [0] * len(ids) ids, attention_mask, token_type_ids([101, 2483, 2207, 4638, 2769, 738, 3300, 1920, 3457, 2682, 106, 102, 0, 0, 0],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])2.2 Tokenizer快速调用 tokenizer.encode_plus()和tokenizer()效果相同 inputs tokenizer.encode_plus(sen, paddingmax_length, max_length15) inputs{input_ids: [101, 2483, 2207, 4638, 2769, 738, 3300, 1920, 3457, 2682, 106, 102, 0, 0, 0], token_type_ids: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], attention_mask: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0]}inputs tokenizer(sen, paddingmax_length, max_length15) inputs{input_ids: [101, 2483, 2207, 4638, 2769, 738, 3300, 1920, 3457, 2682, 106, 102, 0, 0, 0], token_type_ids: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], attention_mask: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0]}2.3 处理batch数据 sens [弱小的我也有大梦想,有梦想谁都了不起,追逐梦想的心比梦想本身更可贵] res tokenizer(sens) res{input_ids: [[101, 2483, 2207, 4638, 2769, 738, 3300, 1920, 3457, 2682, 102], [101, 3300, 3457, 2682, 6443, 6963, 749, 679, 6629, 102], [101, 6841, 6852, 3457, 2682, 4638, 2552, 8024, 3683, 3457, 2682, 3315, 6716, 8024, 3291, 1377, 6586, 102]], token_type_ids: [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], attention_mask: [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]}%%time # 单条循环处理 for i in range(1000):tokenizer(sen) # CPU times: total: 15.6 ms # Wall time: 32.5 ms%%time # 处理batch数据 sen_list [sen] * 1000 res tokenizer(sen_list) # CPU times: total: 0 ns # Wall time: 6 ms2.4 Fast / Slow Tokenizer sen 弱小的我也有大Dreaming! fast_tokenizer AutoTokenizer.from_pretrained(uer/roberta-base-finetuned-dianping-chinese) fast_tokenizer # BertTokenizerFast(name_or_pathuer/roberta-base-finetuned-dianping-chinese, vocab_size21128, model_max_length1000000000000000019884624838656, is_fastTrue, padding_sideright, truncation_sideright, special_tokens{unk_token: [UNK], sep_token: [SEP], pad_token: [PAD], cls_token: [CLS], mask_token: [MASK]}, clean_up_tokenization_spacesTrue)inputs fast_tokenizer(sen, return_offsets_mappingTrue) inputs # {input_ids: [101, 2483, 2207, 4638, 2769, 738, 3300, 1920, 10252, 8221, 106, 102], token_type_ids: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], attention_mask: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], offset_mapping: [(0, 0), (0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 12), (12, 15), (15, 16), (0, 0)]}inputs.word_ids() # [None, 0, 1, 2, 3, 4, 5, 6, 7, 7, 8, None]slow_tokenizer AutoTokenizer.from_pretrained(uer/roberta-base-finetuned-dianping-chinese, use_fastFalse) slow_tokenizer # BertTokenizer(name_or_pathuer/roberta-base-finetuned-dianping-chinese, vocab_size21128, model_max_length1000000000000000019884624838656, is_fastFalse, padding_sideright, truncation_sideright, special_tokens{unk_token: [UNK], sep_token: [SEP], pad_token: [PAD], cls_token: [CLS], mask_token: [MASK]}, clean_up_tokenization_spacesTrue)3. Model模型 3.1 模型加载与保存 在线下载 会遇到HTTP连接超时 from transformers import AutoConfig, AutoModel, AutoTokenizer model AutoModel.from_pretrained(hfl/rbt3, force_downloadTrue)离线下载 需要挂梯子自己进去下载在本地创建文件夹 !git clone https://huggingface.co/hfl/rbt3 !git lfs clone https://huggingface.co/hfl/rbt3 --include*.bin离线加载 model AutoModel.from_pretrained(本地文件夹)模型加载参数 model AutoModel.from_pretrained(本地文件夹) model.configBertConfig {_name_or_path: rbt3,architectures: [BertForMaskedLM],attention_probs_dropout_prob: 0.1,classifier_dropout: null,directionality: bidi,hidden_act: gelu,hidden_dropout_prob: 0.1,hidden_size: 768,initializer_range: 0.02,intermediate_size: 3072,layer_norm_eps: 1e-12,max_position_embeddings: 512,model_type: bert,num_attention_heads: 12,num_hidden_layers: 3,output_past: true,pad_token_id: 0,pooler_fc_size: 768,pooler_num_attention_heads: 12,pooler_num_fc_layers: 3,pooler_size_per_head: 128,pooler_type: first_token_transform, ...transformers_version: 4.28.1,type_vocab_size: 2,use_cache: true,vocab_size: 21128 }config AutoConfig.from_pretrained(./rbt3/) configBertConfig {_name_or_path: rbt3,architectures: [BertForMaskedLM],attention_probs_dropout_prob: 0.1,classifier_dropout: null,directionality: bidi,hidden_act: gelu,hidden_dropout_prob: 0.1,hidden_size: 768,initializer_range: 0.02,intermediate_size: 3072,layer_norm_eps: 1e-12,max_position_embeddings: 512,model_type: bert,num_attention_heads: 12,num_hidden_layers: 3,output_past: true,pad_token_id: 0,pooler_fc_size: 768,pooler_num_attention_heads: 12,pooler_num_fc_layers: 3,pooler_size_per_head: 128,pooler_type: first_token_transform, ...transformers_version: 4.28.1,type_vocab_size: 2,use_cache: true,vocab_size: 21128 }3.2 模型调用 sen 弱小的我也有大梦想 tokenizer AutoTokenizer.from_pretrained(rbt3) inputs tokenizer(sen, return_tensorspt) inputs{input_ids: tensor([[ 101, 2483, 2207, 4638, 2769, 738, 3300, 1920, 3457, 2682, 8013, 102]]), token_type_ids: tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), attention_mask: tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}不带Model Head的模型调用 model AutoModel.from_pretrained(rbt3, output_attentionsTrue) output model(**inputs) outputBaseModelOutputWithPoolingAndCrossAttentions(last_hidden_statetensor([[[ 0.6804, 0.6664, 0.7170, ..., -0.4102, 0.7839, -0.0262],[-0.7378, -0.2748, 0.5034, ..., -0.1359, -0.4331, -0.5874],[-0.0212, 0.5642, 0.1032, ..., -0.3617, 0.4646, -0.4747],...,[ 0.0853, 0.6679, -0.1757, ..., -0.0942, 0.4664, 0.2925],[ 0.3336, 0.3224, -0.3355, ..., -0.3262, 0.2532, -0.2507],[ 0.6761, 0.6688, 0.7154, ..., -0.4083, 0.7824, -0.0224]]],grad_fnNativeLayerNormBackward0), pooler_outputtensor([[-1.2646e-01, -9.8619e-01, -1.0000e00, -9.8325e-01, 8.0238e-01,-6.6268e-02, 6.6919e-02, 1.4784e-01, 9.9451e-01, 9.9995e-01,-8.3051e-02, -1.0000e00, -9.8865e-02, 9.9980e-01, -1.0000e00,9.9993e-01, 9.8291e-01, 9.5363e-01, -9.9948e-01, -1.3219e-01,-9.9733e-01, -7.7934e-01, 1.0720e-01, 9.8040e-01, 9.9953e-01,-9.9939e-01, -9.9997e-01, 1.4967e-01, -8.7627e-01, -9.9996e-01,-9.9821e-01, -9.9999e-01, 1.9396e-01, -1.1277e-01, 9.9359e-01,-9.9153e-01, 4.4752e-02, -9.8731e-01, -9.9942e-01, -9.9982e-01,2.9360e-02, 9.9847e-01, -9.2014e-03, 9.9999e-01, 1.7111e-01,4.5071e-03, 9.9998e-01, 9.9467e-01, 4.9726e-03, -9.0707e-01,6.9056e-02, -1.8141e-01, -9.8831e-01, 9.9668e-01, 4.9800e-01,1.2997e-01, 9.9895e-01, -1.0000e00, -9.9990e-01, 9.9478e-01,-9.9989e-01, 9.9906e-01, 9.9820e-01, 9.9990e-01, -6.8953e-01,9.9990e-01, 9.9987e-01, 9.4563e-01, -3.7660e-01, -1.0000e00,1.3151e-01, -9.7371e-01, -9.9997e-01, -1.3228e-02, -2.9801e-01,-9.9985e-01, 9.9662e-01, -2.0004e-01, 9.9997e-01, 3.6876e-01,-9.9997e-01, 1.5462e-01, 1.9265e-01, 8.9871e-02, 9.9996e-01,9.9998e-01, 1.5184e-01, -8.9714e-01, -2.1646e-01, -9.9922e-01, ...1.7911e-02, 4.8672e-01],[4.0732e-01, 3.8137e-02, 9.6832e-03, ..., 4.4490e-02,2.2997e-02, 4.0793e-01],[1.7047e-01, 3.6989e-02, 2.3646e-02, ..., 4.6833e-02,2.5233e-01, 1.6721e-01]]]], grad_fnSoftmaxBackward0)), cross_attentionsNone)output.last_hidden_state.size() # orch.Size([1, 12, 768]) len(inputs[input_ids][0]) # 12带Model Head的模型调用 from transformers import AutoModelForSequenceClassification, BertForSequenceClassification clz_model AutoModelForSequenceClassification.from_pretrained(rbt3, num_labels10) clz_model(**inputs) # SequenceClassifierOutput(lossNone, logitstensor([[-0.1776, 0.2208, -0.5060, -0.3938, -0.5837, 1.0171, -0.2616, 0.0495, 0.1728, 0.3047]], grad_fnAddmmBackward0), hidden_statesNone, attentionsNone) clz_model.config.num_labels # 2
http://www.zqtcl.cn/news/323742/

相关文章:

  • ftp 迁移 网站建筑公司商标logo设计
  • 没钱怎么做网站wordpress 链接修改插件
  • 建一个网站需要多久建设银行官网登录入口
  • 贸易公司网站制作邢台哪里做网站
  • 2018网站开发的革新帮别人起名 做ppt的网站
  • 有哪些做问卷调查赚钱的网站6长沙网站建设技术
  • 烟台做网站需要多少钱制作ppt的软件是什么
  • 泉州模板开发建站wordpress显示一个类目
  • 河南造价信息网官网为什么要做网站优化
  • 网站做个seo要多少钱做公司网站开发的公司
  • 企业网站html模板下载安装的字体wordpress
  • 庙行镇seo推广网站朋友圈的广告推广怎么弄
  • 网站打不开怎么办html怎么做网站背景
  • 厦门网站排名网络服务类型有哪些
  • 如何选择制作网站公司心雨在线高端网站建设专业
  • 山西做网站如何选择2万元最简单装修
  • 广丰区建设局网站友情链接发布网
  • 沧州做网站的专业公司python做网站视频
  • 管理外贸网站模板下载大数据营销优势
  • 做网站的小图标硬盘做网站空间
  • 微信网站界面设计宁波网站优化公司推荐
  • 深圳商城网站开发七冶建设集团网站
  • 广州旅游网站建设设计公司wordpress长文章分页代码
  • 手机营销网站网站的字体
  • 设计网站大全软件互动营销用在哪些推广上面
  • 建设银行网站怎样查询贷款信息吗台州网站制作 外贸
  • 建设网站的步骤知乎app开发定制公司
  • 怎样自己做刷赞网站专业网站设计服务
  • 云主机建站如何让自己做的博客网站上线
  • 目前我们的网站正在建设中做网站违反广告法