当前位置: 首页 > news >正文

学生网站建设的心得专业网站优化案例

学生网站建设的心得,专业网站优化案例,网页设计素材 旅游,呼和浩特网站建设网络公司文章目录 0 前言1 课题背景2 实现效果3 Yolov5算法4 数据处理和训练5 最后 0 前言 #x1f525; 优质竞赛项目系列#xff0c;今天要分享的是 #x1f6a9; **深度学习卫星遥感图像检测与识别 ** 该项目较为新颖#xff0c;适合作为竞赛课题方向#xff0c;学长非常推荐… 文章目录 0 前言1 课题背景2 实现效果3 Yolov5算法4 数据处理和训练5 最后 0 前言 优质竞赛项目系列今天要分享的是 **深度学习卫星遥感图像检测与识别 ** 该项目较为新颖适合作为竞赛课题方向学长非常推荐 学长这里给一个题目综合评分(每项满分5分) 难度系数3分工作量3分创新点5分 更多资料, 项目分享 https://gitee.com/dancheng-senior/postgraduate 1 课题背景 近年来,世界各国大力发展航空航天事业,卫星图像的目标检测在各行各业的应用得到了快速的发展,特别是军事侦查、海洋船舶和渔业管理等领域。由于卫星图像中有价值的信息极少,卫星图像数据规模巨大,这迫切需要智能辅助工具帮助相关从业人员从卫星图像中高效获取精确直观的信息。 本文利用深度学习技术基于Yolov5算法框架实现卫星图像目标检测问题。 2 实现效果 实现效果如下可以看出对船只、飞机等识别效果还是很好的。 3 Yolov5算法 简介 下图所示为 YOLOv5 的网络结构图分为输入端BackboneNeck 和 Prediction 四个部分。其中 输入端包括 Mosaic 数据增强、自适应图片缩放、自适应锚框计算Backbone 包括 Focus 结构、CSP 结 构Neck 包 括 FPNPAN 结 构Prediction 包 括GIOU_Loss 结构。 相关代码 ​ class Yolo(object):def __init__(self, weights_file, verboseTrue):self.verbose verbose# detection paramsself.S 7 # cell sizeself.B 2 # boxes_per_cellself.classes [aeroplane, bicycle, bird, boat, bottle,bus, car, cat, chair, cow, diningtable,dog, horse, motorbike, person, pottedplant,sheep, sofa, train,tvmonitor]self.C len(self.classes) # number of classes# offset for box center (top left point of each cell)self.x_offset np.transpose(np.reshape(np.array([np.arange(self.S)]*self.S*self.B),[self.B, self.S, self.S]), [1, 2, 0])self.y_offset np.transpose(self.x_offset, [1, 0, 2])self.threshold 0.2 # confidence scores threholdself.iou_threshold 0.4# the maximum number of boxes to be selected by non max suppressionself.max_output_size 10self.sess tf.Session()self._build_net()self._build_detector()self._load_weights(weights_file)4 数据处理和训练 数据集 本项目使用 DOTA 数据集原数据集中待检测的目标如下 原数据集中的标签如下 图像分割和尺寸调整 YOLO 模型的图像输入尺寸是固定的由于原数据集中的图像尺寸不一我们将原数据集中的图像按目标分布的位置分割成一个个包含目标的子图并将每个子图尺寸调整为 1024×1024。分割前后的图像如所示。 分割前 分割后 模型训练 在 yolov5/ 目录运行 train.py 文件开始训练 ​ python train.py --weight weights/yolov5s.pt --batch 16 --epochs 100 --cache其中的参数说明 weight使用的预训练权重这里示范使用的是 yolov5s 模型的预训练权重batchmini-batch 的大小这里使用 16epochs训练的迭代次数这里我们训练 100 个 epochcache使用数据缓存加速训练进程 相关代码 ​ #部分代码 def train(hyp, opt, device, tb_writerNone):logger.info(fHyperparameters {hyp})log_dir Path(tb_writer.log_dir) if tb_writer else Path(opt.logdir) / evolve # logging directorywdir log_dir / weights # weights directoryos.makedirs(wdir, exist_okTrue)last wdir / last.ptbest wdir / best.ptresults_file str(log_dir / results.txt)epochs, batch_size, total_batch_size, weights, rank \opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank# Save run settingswith open(log_dir / hyp.yaml, w) as f:yaml.dump(hyp, f, sort_keysFalse)with open(log_dir / opt.yaml, w) as f:yaml.dump(vars(opt), f, sort_keysFalse)# Configurecuda device.type ! cpuinit_seeds(2 rank)with open(opt.data) as f:data_dict yaml.load(f, Loaderyaml.FullLoader) # data dictwith torch_distributed_zero_first(rank):check_dataset(data_dict) # checktrain_path data_dict[train]test_path data_dict[val]nc, names (1, [item]) if opt.single_cls else (int(data_dict[nc]), data_dict[names]) # number classes, namesassert len(names) nc, %g names found for nc%g dataset in %s % (len(names), nc, opt.data) # check# Modelpretrained weights.endswith(.pt)if pretrained:with torch_distributed_zero_first(rank):attempt_download(weights) # download if not found locallyckpt torch.load(weights, map_locationdevice) # load checkpointif anchors in hyp and hyp[anchors]:ckpt[model].yaml[anchors] round(hyp[anchors]) # force autoanchormodel Model(opt.cfg or ckpt[model].yaml, ch3, ncnc).to(device) # createexclude [anchor] if opt.cfg else [] # exclude keysstate_dict ckpt[model].float().state_dict() # to FP32state_dict intersect_dicts(state_dict, model.state_dict(), excludeexclude) # intersectmodel.load_state_dict(state_dict, strictFalse) # loadlogger.info(Transferred %g/%g items from %s % (len(state_dict), len(model.state_dict()), weights)) # reportelse:model Model(opt.cfg, ch3, ncnc).to(device) # create# Freezefreeze [, ] # parameter names to freeze (full or partial)if any(freeze):for k, v in model.named_parameters():if any(x in k for x in freeze):print(freezing %s % k)v.requires_grad False# Optimizernbs 64 # nominal batch sizeaccumulate max(round(nbs / total_batch_size), 1) # accumulate loss before optimizinghyp[weight_decay] * total_batch_size * accumulate / nbs # scale weight_decaypg0, pg1, pg2 [], [], [] # optimizer parameter groupsfor k, v in model.named_parameters():v.requires_grad Trueif .bias in k:pg2.append(v) # biaseselif .weight in k and .bn not in k:pg1.append(v) # apply weight decayelse:pg0.append(v) # all else​ 训练开始时的日志信息 5 最后 更多资料, 项目分享 https://gitee.com/dancheng-senior/postgraduate
http://www.zqtcl.cn/news/135465/

相关文章:

  • 网站搭建技术要求企业网站推广的一般策略
  • 网站建设流程行业现状安阳历史
  • 制作软件的网站装饰工程设计东莞网站建设
  • 如何不花钱开发网站搜索引擎营销原理是什么
  • 网站不能访问如何做冗余Wordpress手机短信
  • 深圳的设计网站公司新媒体网站建设
  • 网站title优化实搜网站建设
  • 淘宝网网页版官网优化系统软件
  • 公司找网站做宣传做账网页设计的岗位叫什么
  • 门户网站区别视频上传下载网站建设
  • 企业局域网组建与网站建设域名备案的网站名称
  • 广西学校论坛网站建设网站建设得花多少钱
  • 装修公司网站源代码网站建设岗位周计划
  • 有没有专门学做婴儿衣服的网站org.wordpress utils
  • 网站关键词 提醒哪个网站做视频有钱挣
  • 建设企业网站注意事项菜篮网网站开发技术
  • 怎么把图片做超链接到网站wordpress 配置模板
  • 湘潭网站seo惠州市建设厅网站
  • 广州外贸网站效果百度竞价开户需要多少钱
  • 广州做手机网站信息附近卖建筑模板市场
  • 怎么看网站开发语言信息dw网站建设视频下载
  • 做网站虚拟主机多少钱wordpress中category参数
  • 山东省建设执业师网站建设网站图片
  • 网站建设的安全可行性网站建设教学设计
  • 网站架设建设动易门户网站价格
  • 公司快速建站商城网站建设讯息
  • it公司做网站用什么软件鲁中网站
  • 制作属于自己的app教程北京和隆优化招聘
  • wordpress会员卡系统青岛百度优化
  • 网站的管理系统网站权限配置